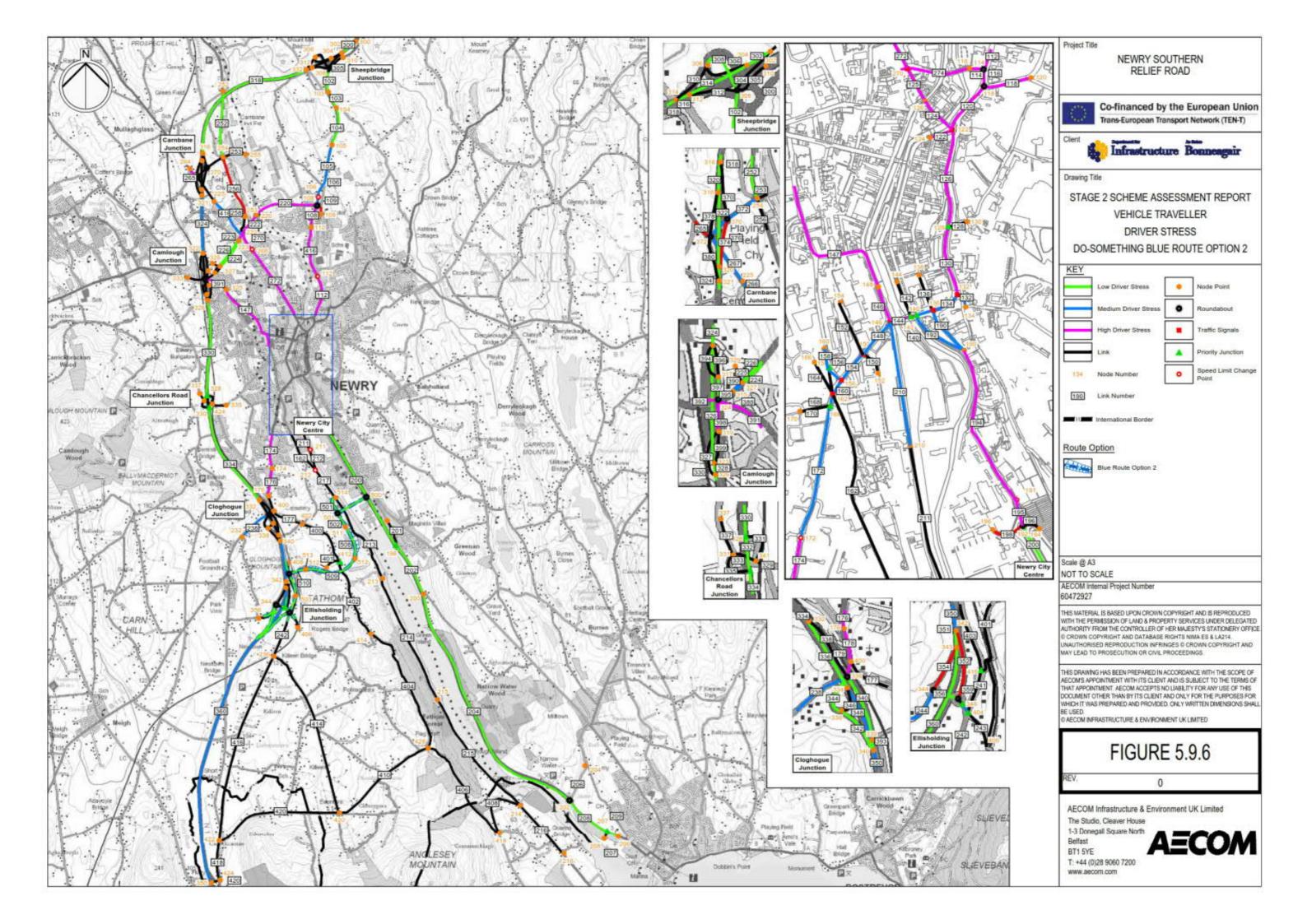


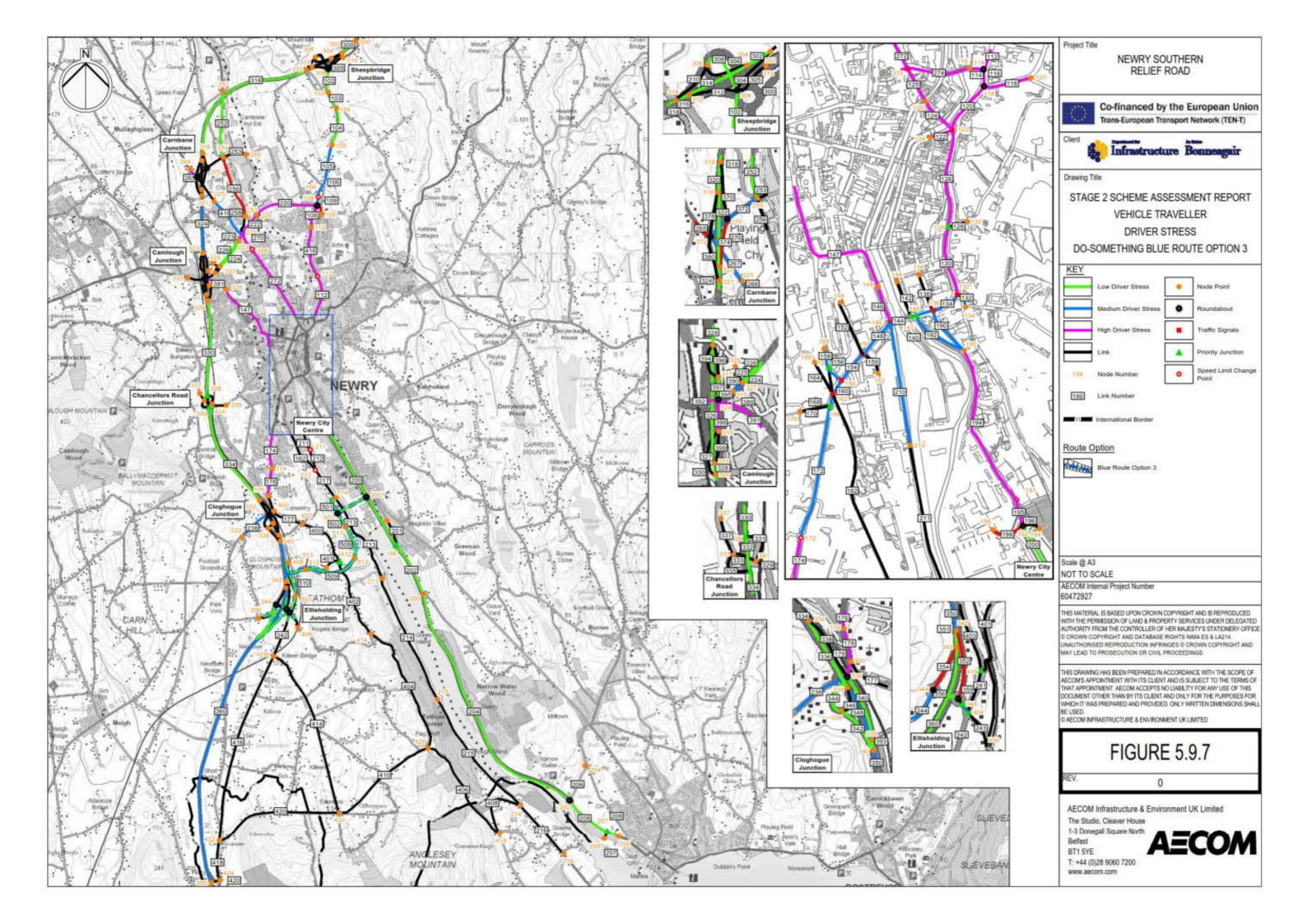
Newry Southern Relief Road

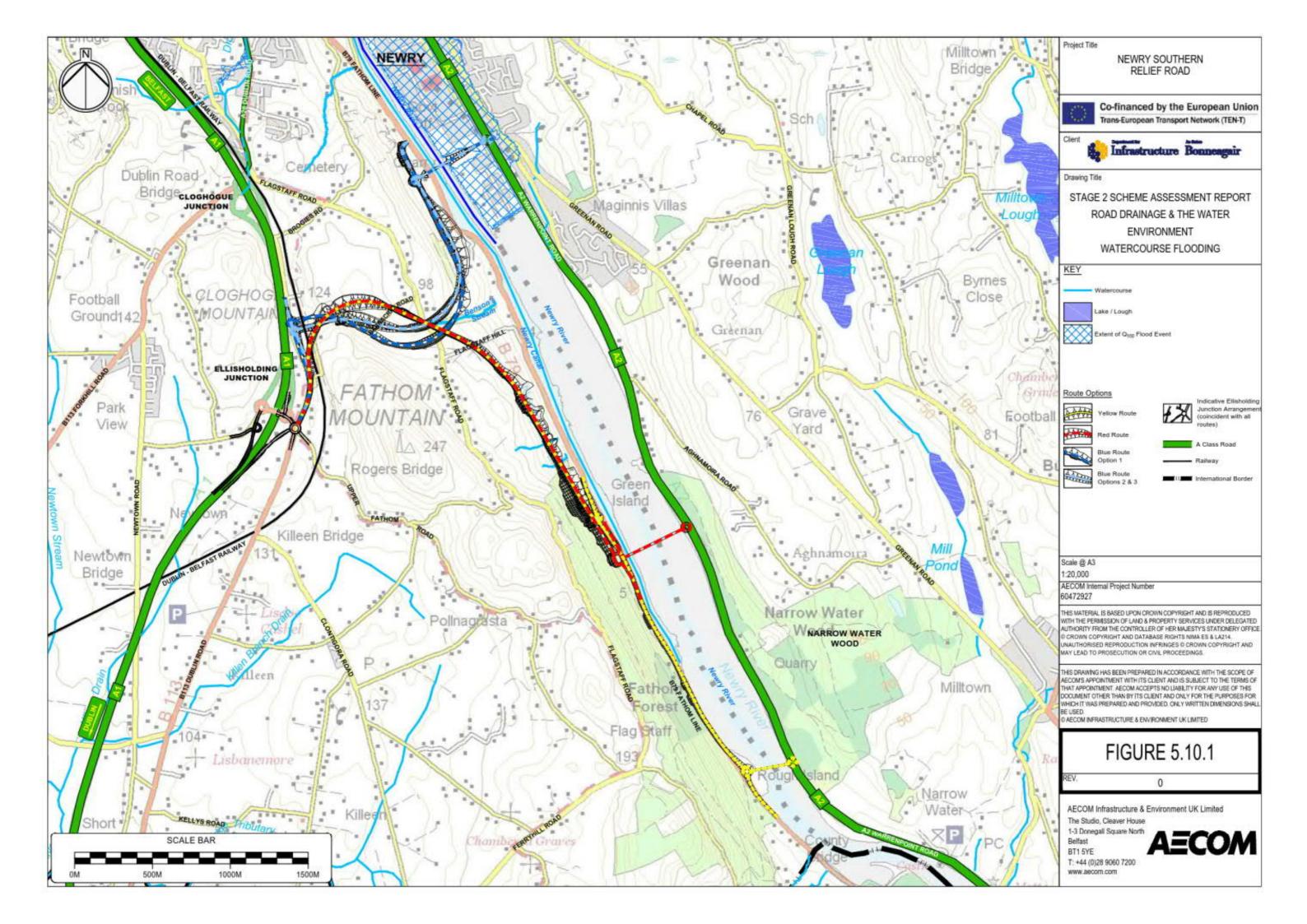
Co-financed by the European Union Trans-European Transport Network (TEN-T)

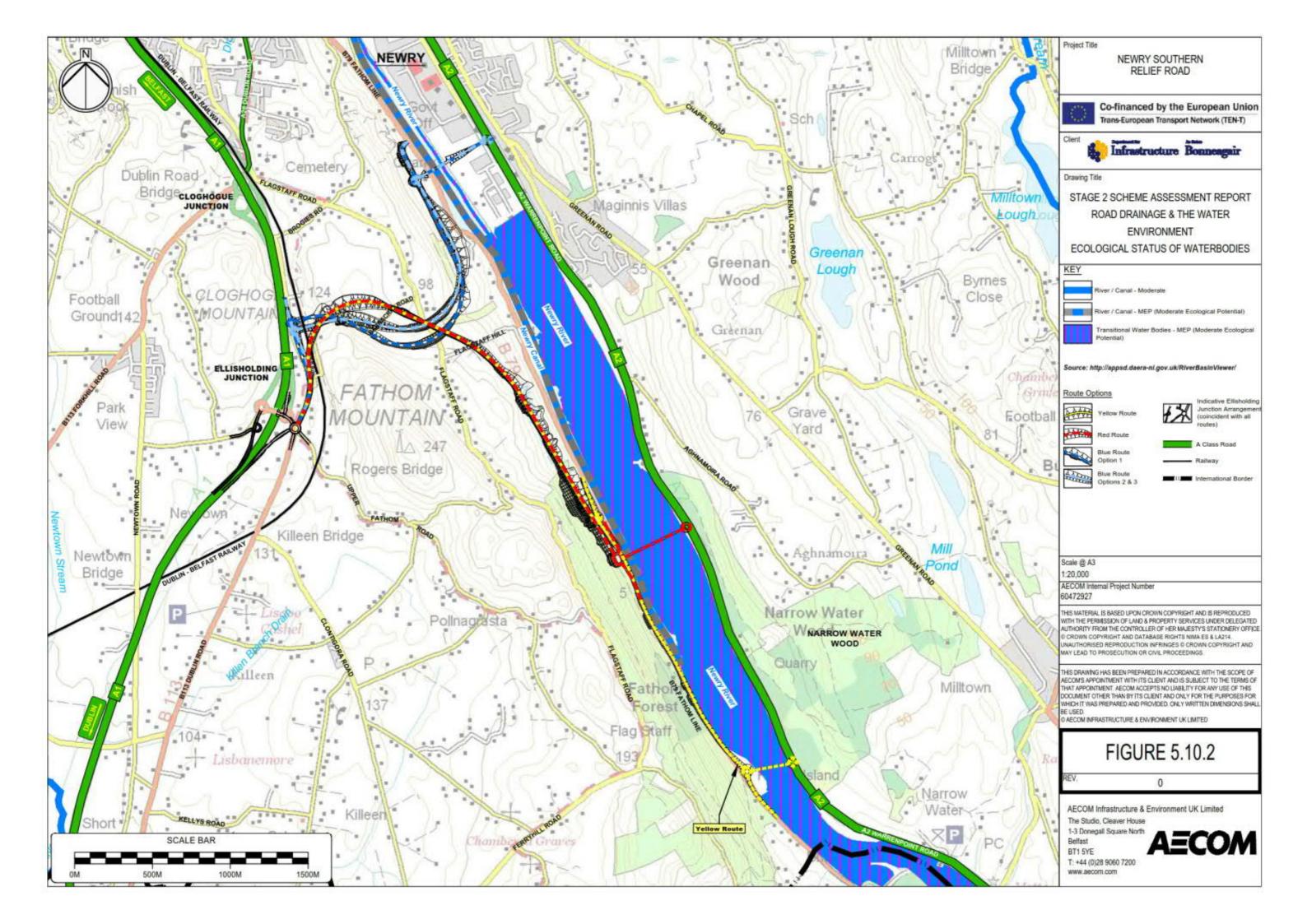
Stage 2 Scheme Assessment Report - Appendices Part B

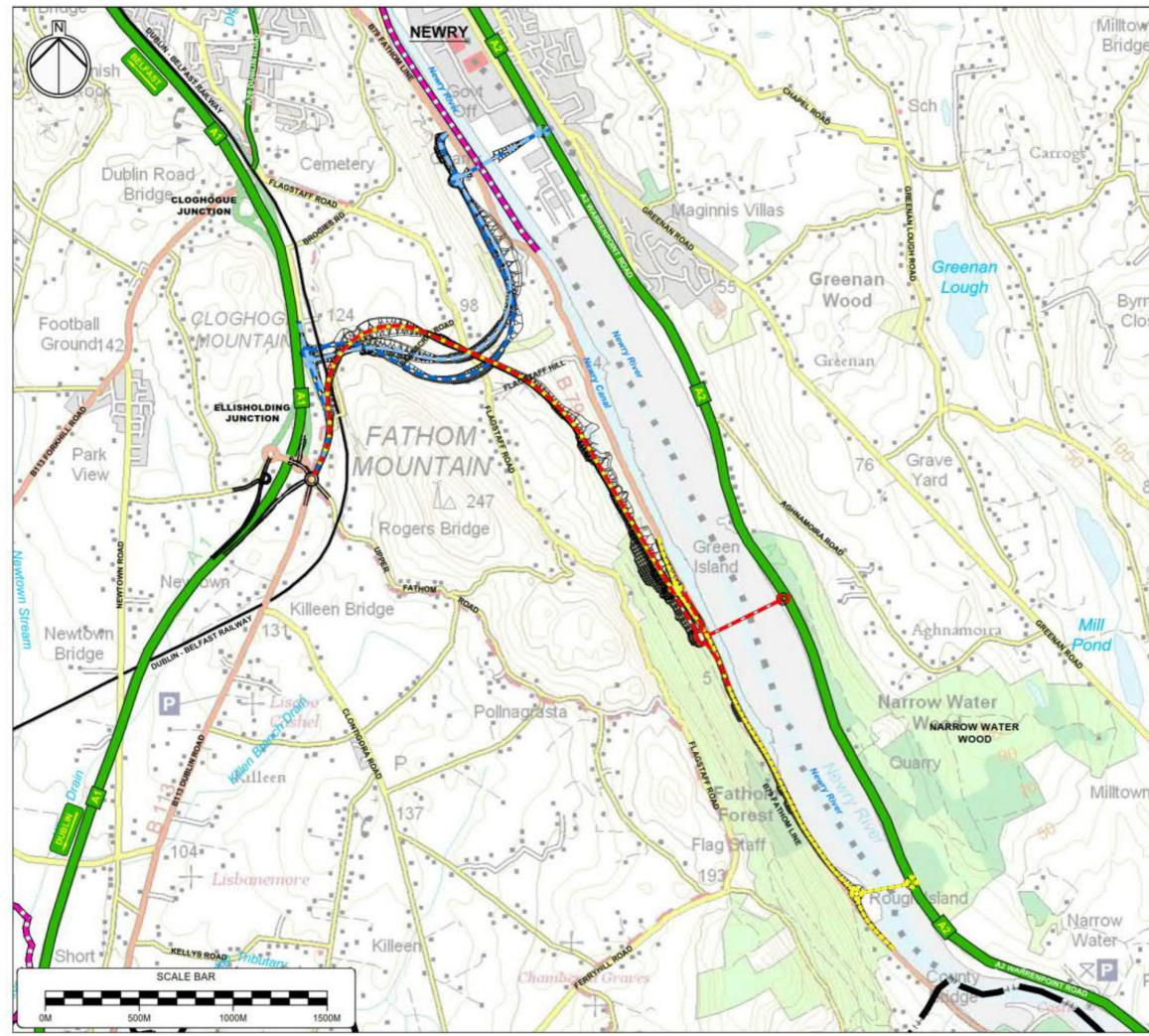
Department for Infrastructure (Dfl) Roads

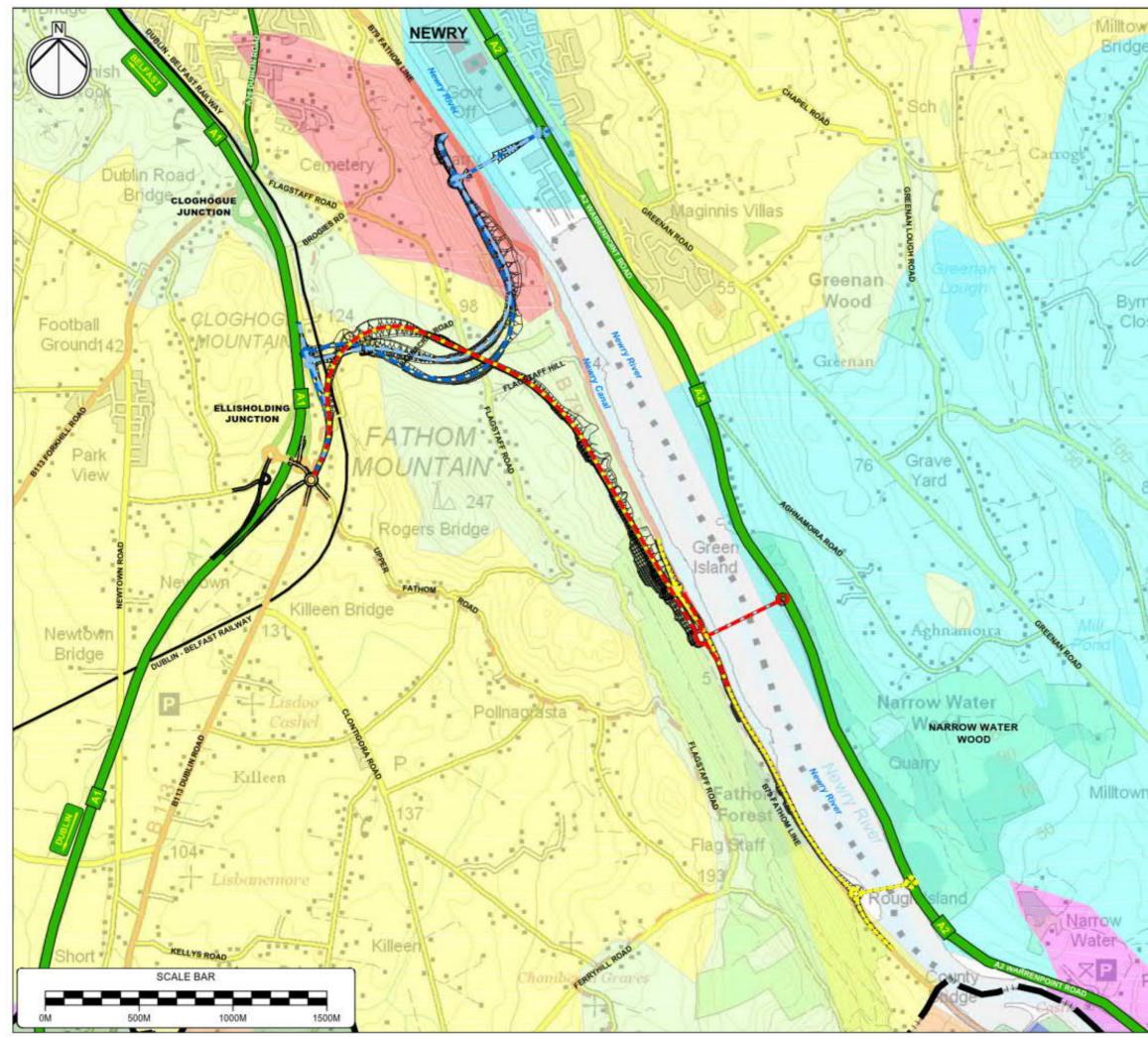

FINAL

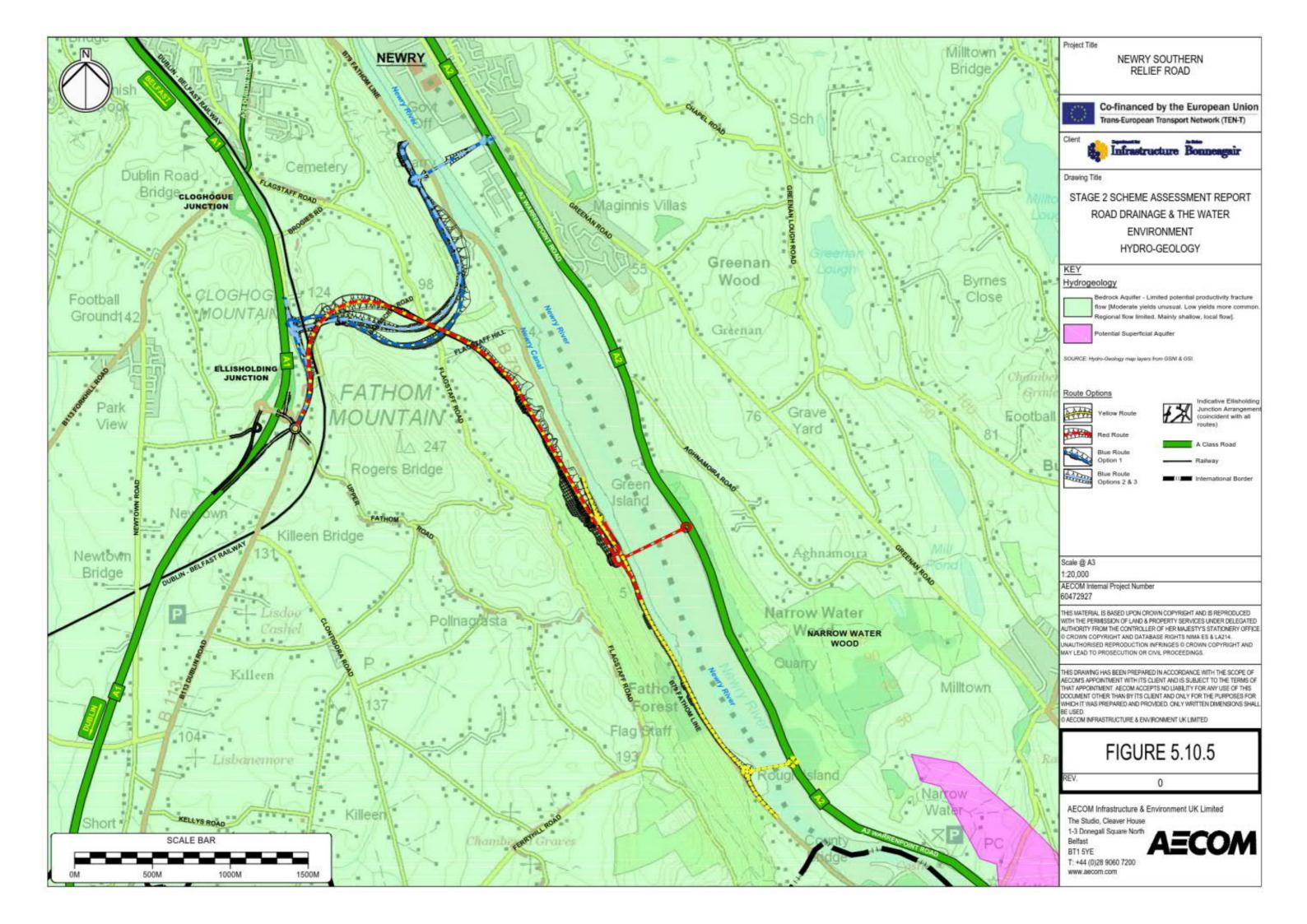

Project number: 60472927

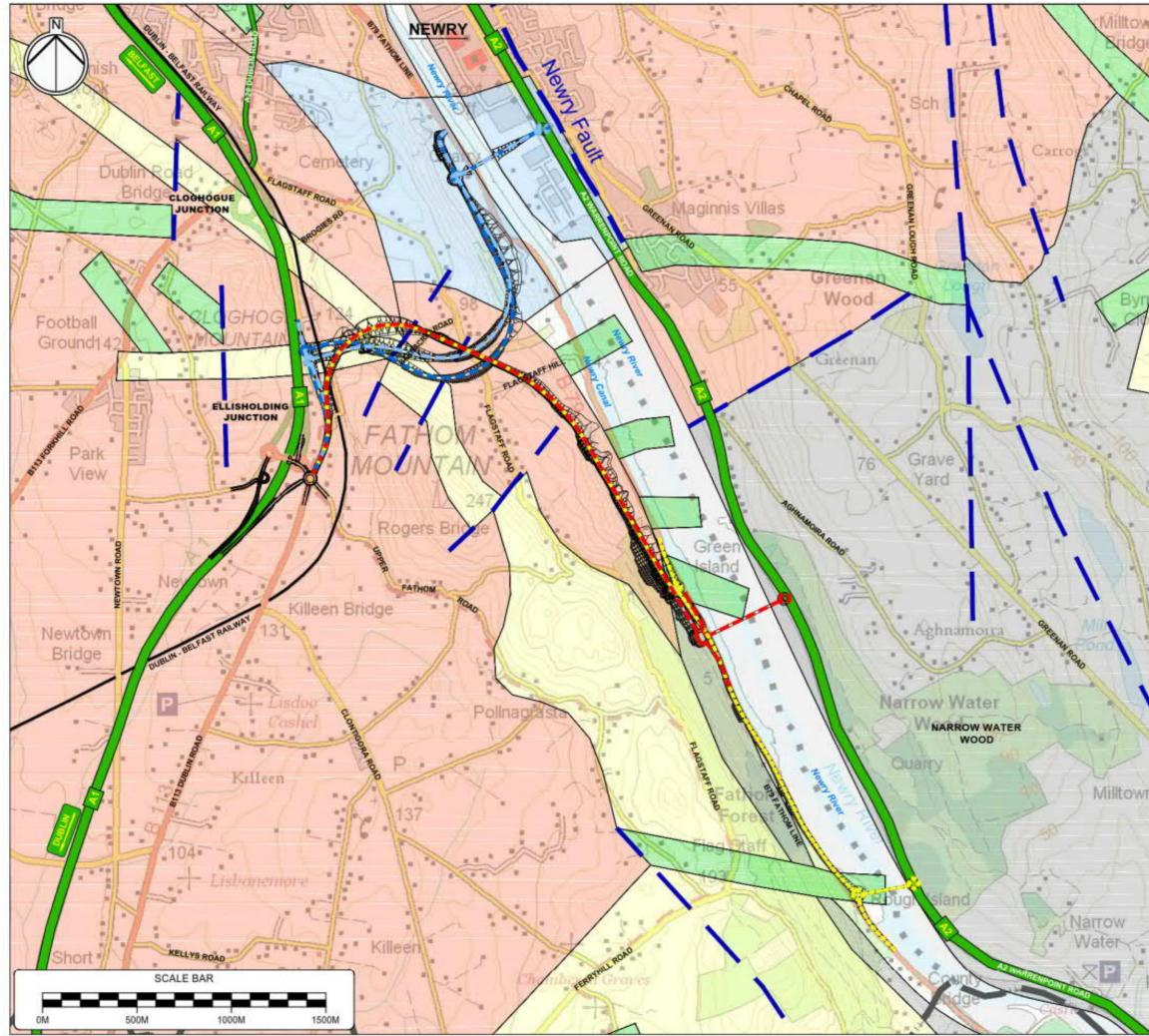

September 2018



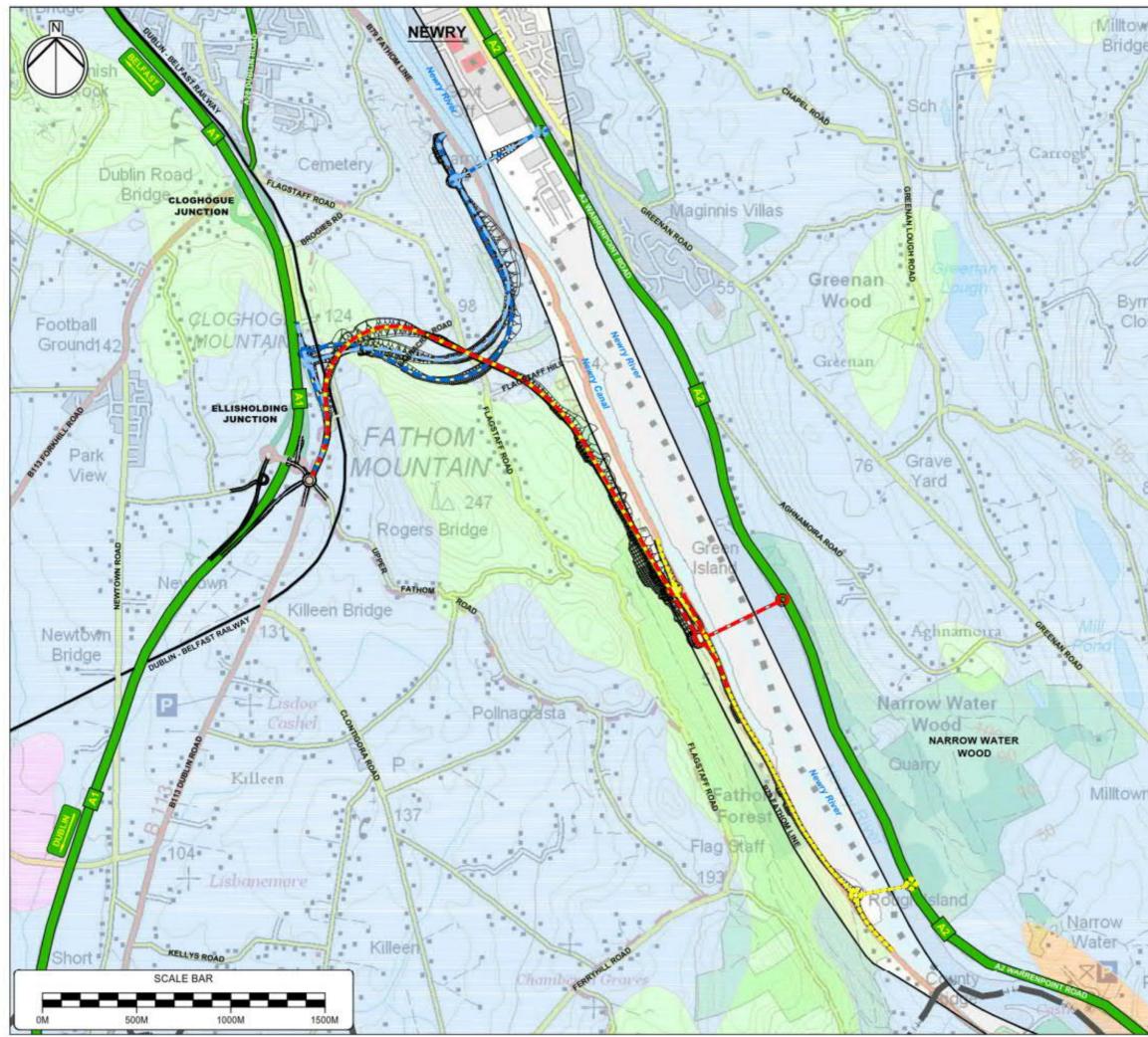

Appendix A Figures (not in the main body of text)



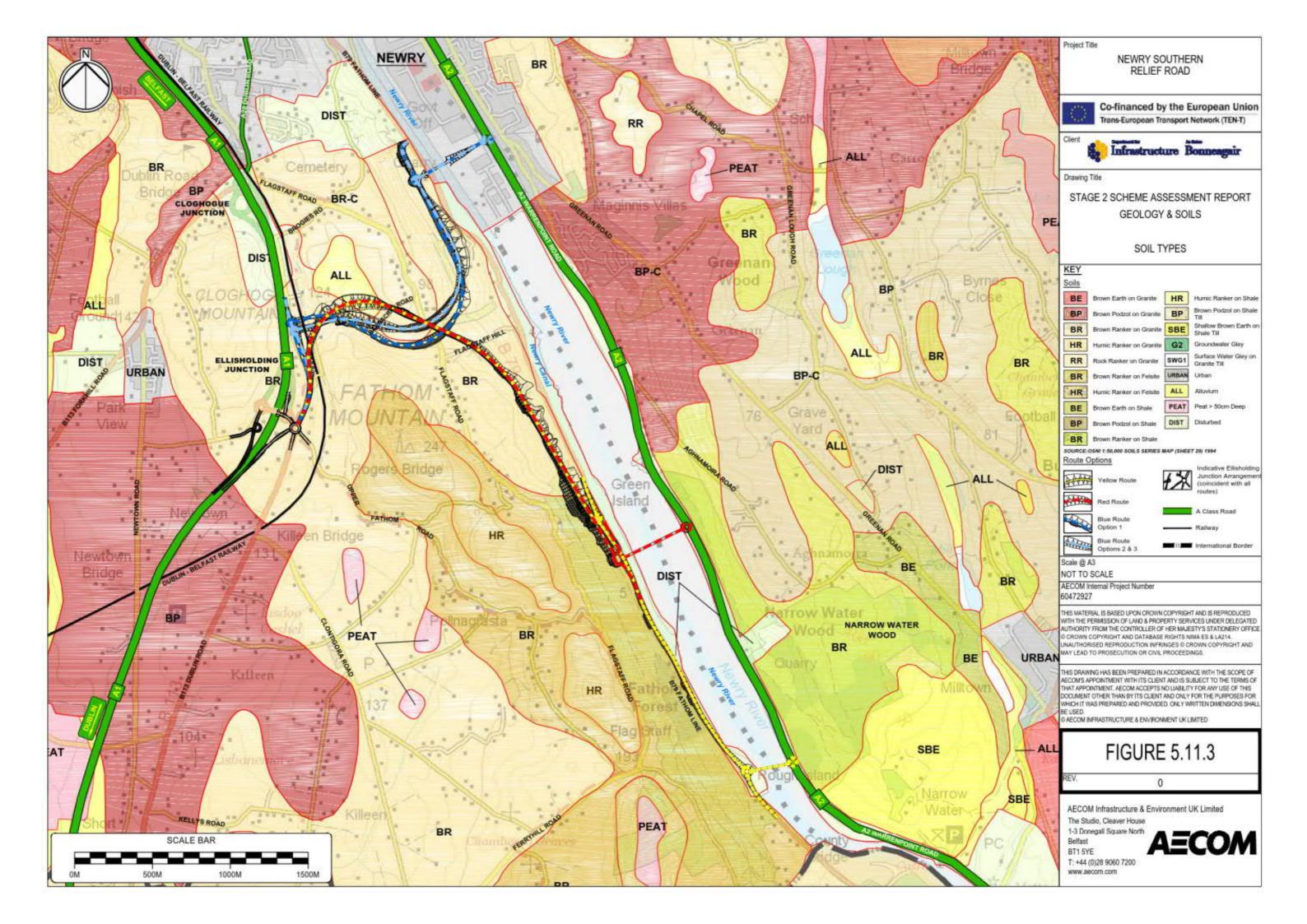


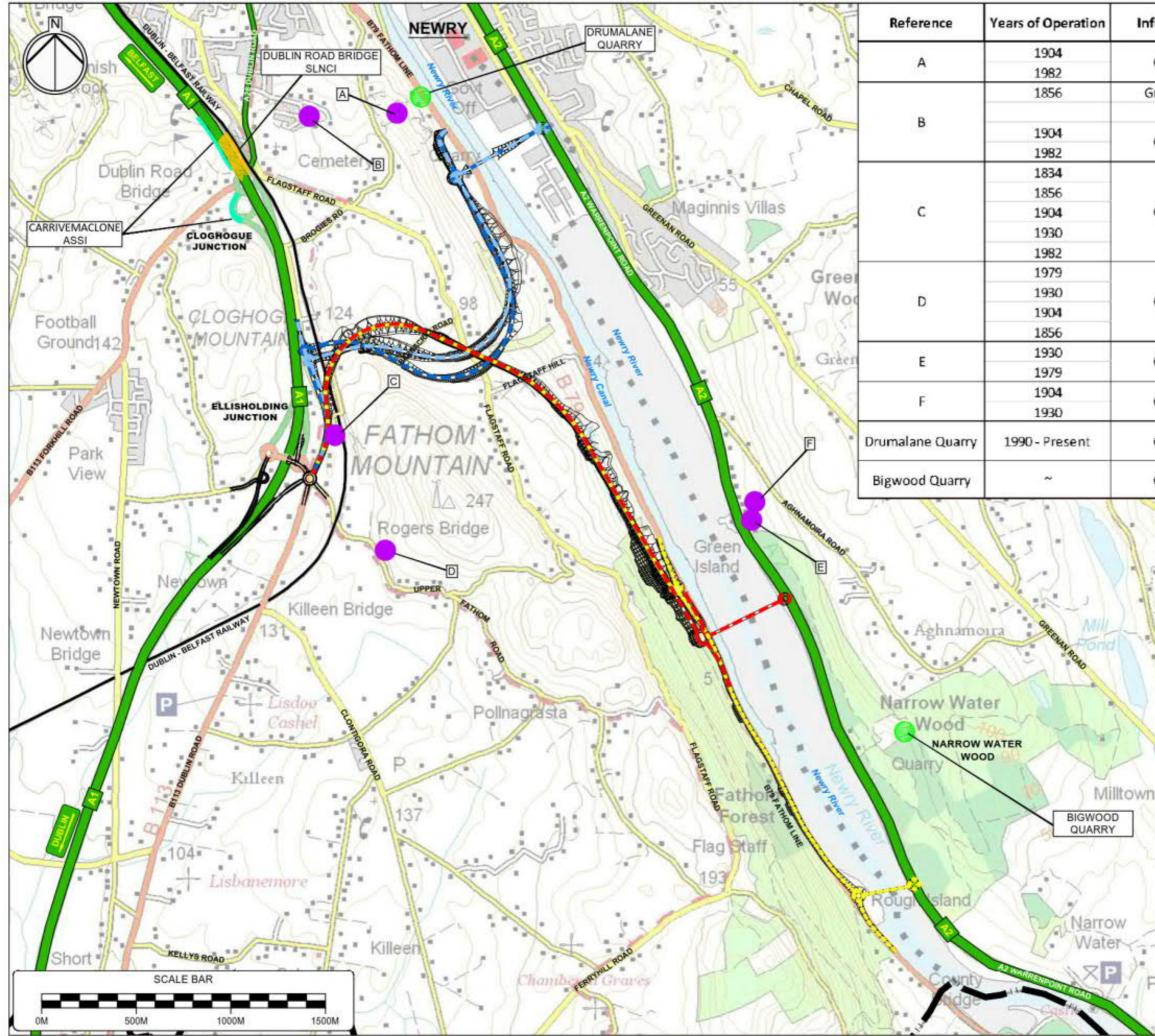


n	Project Title NEWRY SOUTHERN RELIEF ROAD
	Co-financed by the European Union Trans-European Transport Network (TEN-T)
1	Cient Infrastructure Bonneagair
	Drawing Title
Millio	STAGE 2 SCHEME ASSESSMENT REPORT
Loug	ROAD DRAINAGE & THE WATER
	ENVIRONMENT
	PROTECTED WATERBODIES
	KEY
se	Protected Watercourse
	Source: http://appsd.doera-nl.gov.uk/RiverBasinViewen/
Chembe	
7 Grade	Route Options Indicative Ellisholding
Football	Yellow Route Junction Arrangement (coincident with all
M IN	Red Route
a plant	Blue Route
BI	Option 1 Railway
2222	Options 2 & 3
1603	
1000	
-	
11/1	Scale @ A3
1440	1:20,000
1 hours	AECOM Internal Project Number 60472927
1	THIS MATERIAL IS BASED UPON CROWN COPYRIGHT AND IS REPRODUCED WITH THE PERMISSION OF LAND & PROPERTY SERVICES UNDER DELEGATED AUTHORITY FROM THE CONTROLLER OF HER MAJESTY'S STATIONERY OFFICE © CROWN COPYRIGHT AND DATABASE RIGHTS NIMA ES & LA214. UNAUTHORISED REPRODUCTION INFRIGES © CROWN COPYRIGHT AND MAY LEAD TO PROSECUTION OR CIVIL PROCEEDINGS.
	THIS DRAWING HAS BEEN PREPARED IN ACCORDANCE WITH THE SCOPE OF AECOM'S APPOINTMENT WITH IT'S CLIENT AND IS SUBJECT TO THE TERMS OF THAT APPOINTMENT. AECOM ACCEPTS NO LIABLITY FOR ANY USE OF THIS DOCUMENT OTHER THAN BY IT'S CLIENT AND ONLY FOR THE PURPOSES FOR WHICH IT WAS PREPARED AND PROVIDED. ONLY WRITTEN DIMENSIONS SHALL BE USED.
P	© AECOM INFRASTRUCTURE & ENVIRONMENT UK LIMITED
Ra	FIGURE 5.10.3
12.	REV. 0
- 15	
PC	AECOM Infrastructure & Environment UK Limited The Studio, Cleaver House 1-3 Donegall Square North Belfast BT1 5YE
La G	T: +44 (0)28 9060 7200 www.aecom.com

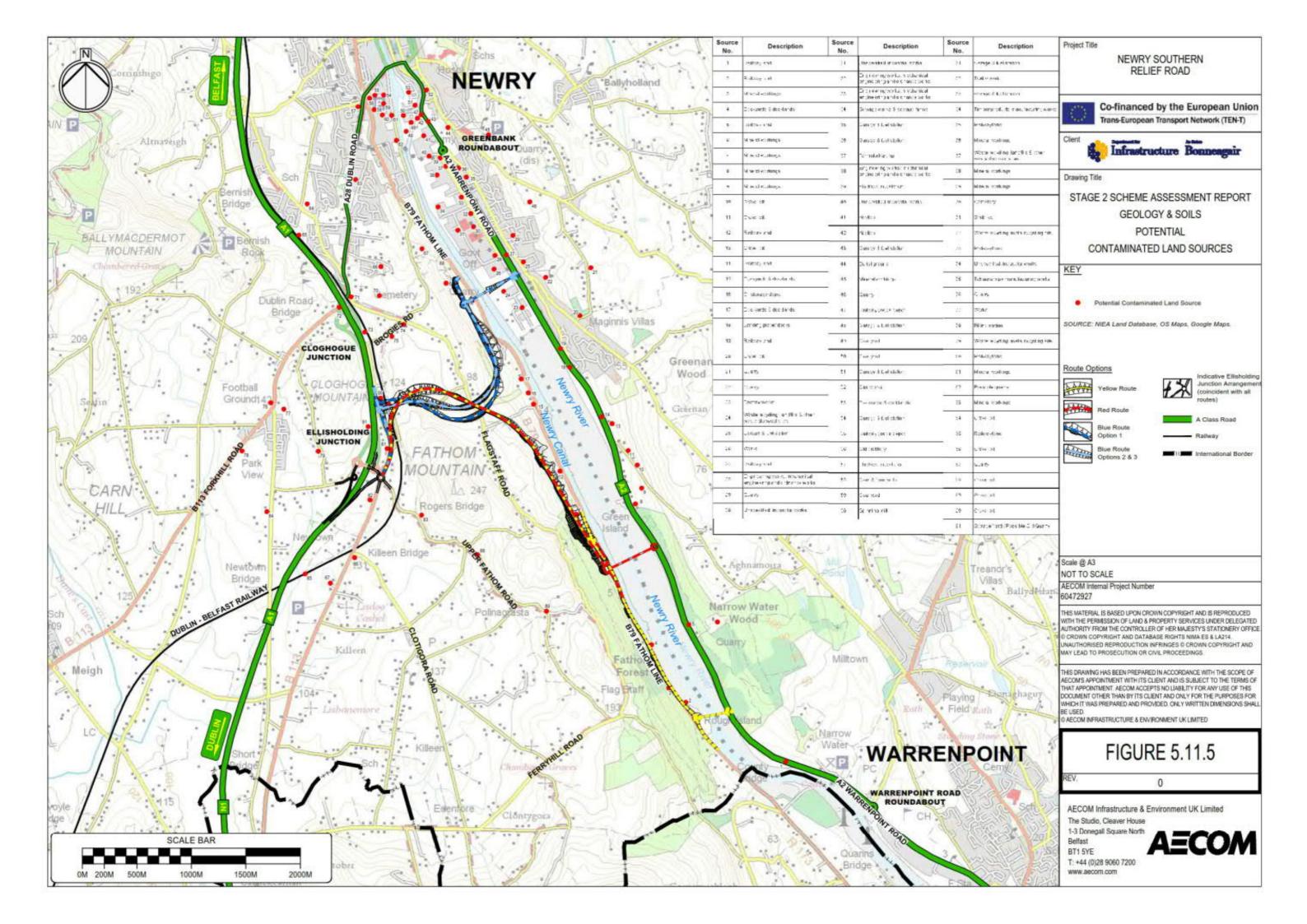


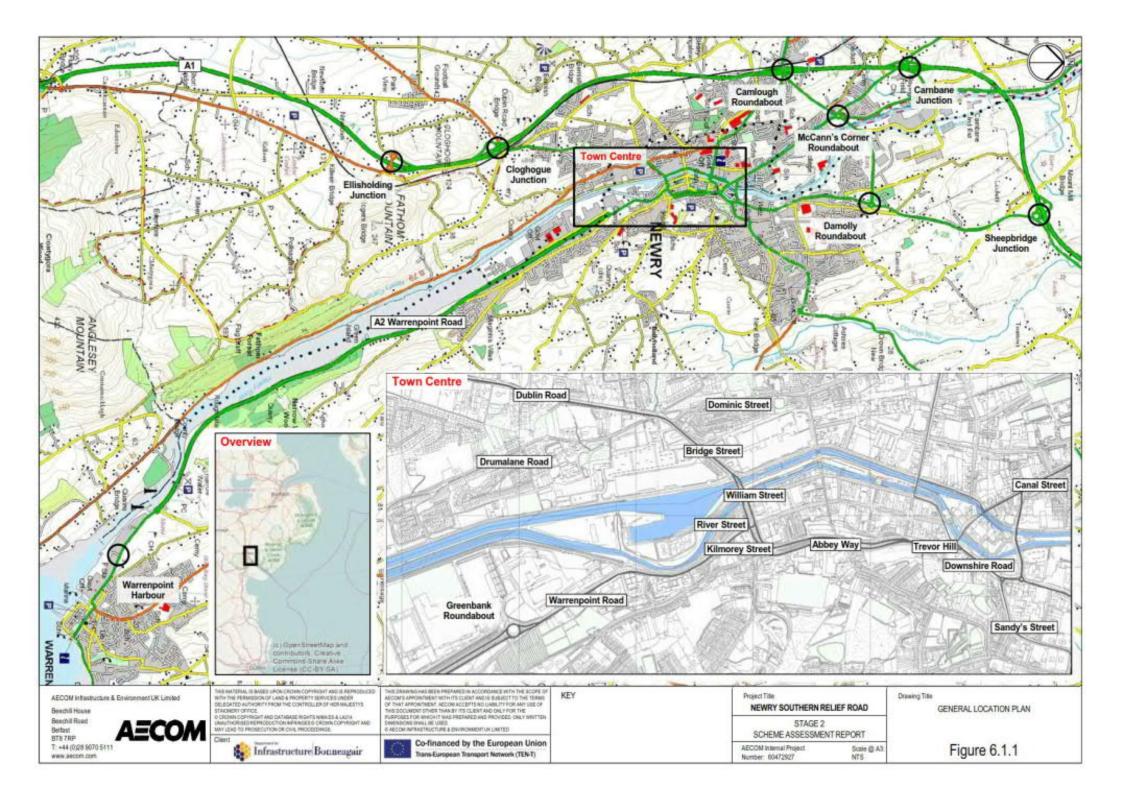
	Project Title
	NEWRY SOUTHERN RELIEF ROAD
20X	Co-financed by the European Union Trans-European Transport Network (TEN-T)
12	Cient Infrastructure Bonneagair
	Drawing Title
1 Mutto	STAGE 2 SCHEME ASSESSMENT REPORT
S. 78	ROAD DRAINAGE & THE WATER ENVIRONMENT
1 Jr	GROUNDWATER VULNERABILITY
ing in the	KEY Groundwater Vulnerability Classes
se	Five classes of vulnerability have been mapped. [Highest] Lowest
201	5 4 3 2 1
1.2	-2
1 mil	4a - Sand and gravel cover (non-aquifer)
/ Chambe	4c - Low permeability cover
1 Grade	4e - Where superficial aquifers are present
Football	5
TIN.	SOURCE: GROUNDWATER VULNERABILITY MAP OF NORTHERN IRELAND
· · · ·	Route Options Indicative Ellisholding
PI	Yellow Route Vellow Route Junction Arrangement (coincident with all routes)
E all	Red Route A Class Road Blue Route
1.	Option 1 Railway
	Options 2 & 3
	Scale @ A3 1:20,000
1.17	AECOM Internal Project Number 60472927
X	THIS MATERIAL IS BASED UPON CROWN COPYRIGHT AND IS REPRODUCED WITH THE PERMISSION OF LAND & PROPERTY SERVICES UNDER DELEGATED
	AUTHORITY FROM THE CONTROLLER OF HER MALESTYS STATIONERY OFFICE © CROWN COPYRIGHT AND DATABASE RIGHTS NIMA ES & LA214. UNAUTHORISED REPRODUCTION INFRINGES © CROWN COPYRIGHT AND MAY LEAD TO PROSECUTION OR CIVIL PROCEEDINGS.
	THIS DRAWING HAS BEEN PREPARED IN ACCORDANCE WITH THE SCOPE OF AECOM'S APPOINTMENT WITH ITS CLIENT AND IS SUBJECT TO THE TERMS OF THAT APPOINTMENT, AECOM ACCEPTS NO LIABLITY FOR ANY USE OF THIS DOCUMENT OTHER THAN BY ITS CLIENT AND ONLY FOR THE PURPOSES FOR WHICH IT WAS PREPARED AND PROVIDED. ONLY WRITTEN DIMENSIONS SHALL
A P	BE USED. © AECOM INFRASTRUCTURE & ENVIRONMENT UK LIMITED
Ra	FIGURE 5.10.4
7.	REV. 0
1161	
c A	AECOM Infrastructure & Environment UK Limited The Studio, Cleaver House 1-3 Donegall Square North Belfast BT1 5YE
1	BT1 5YE T: +44 (0)28 9060 7200 www.aecom.com

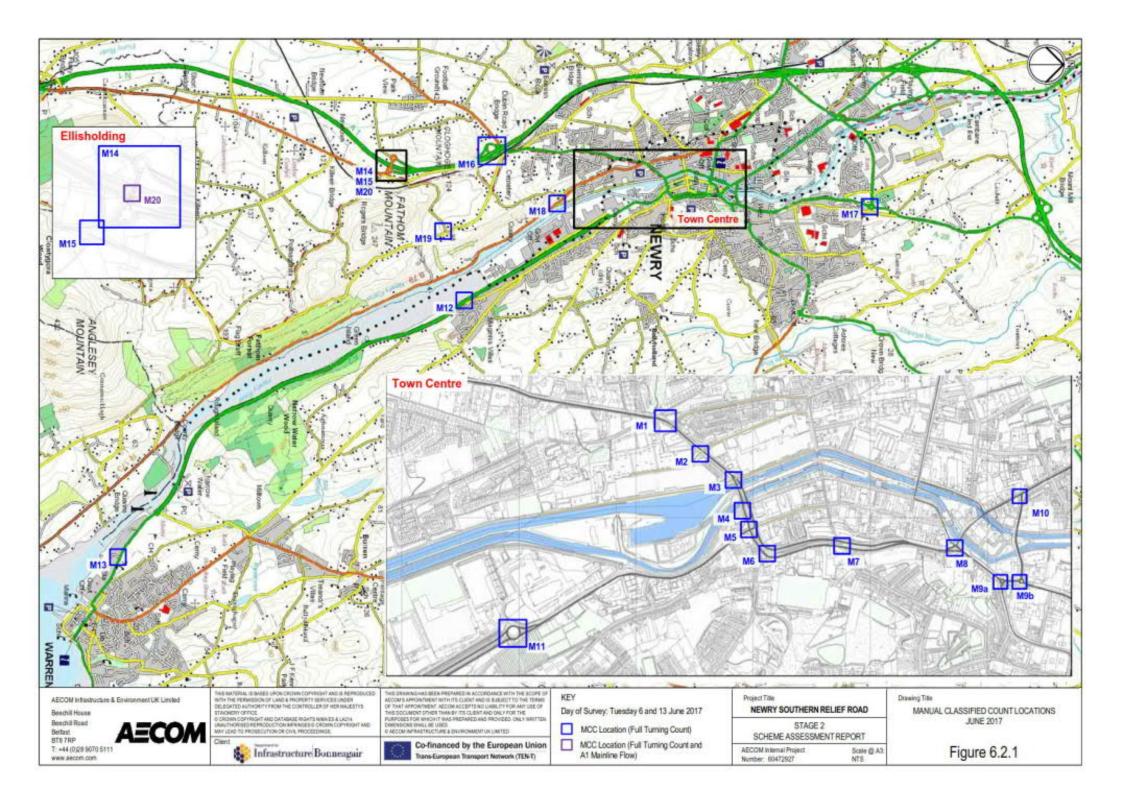


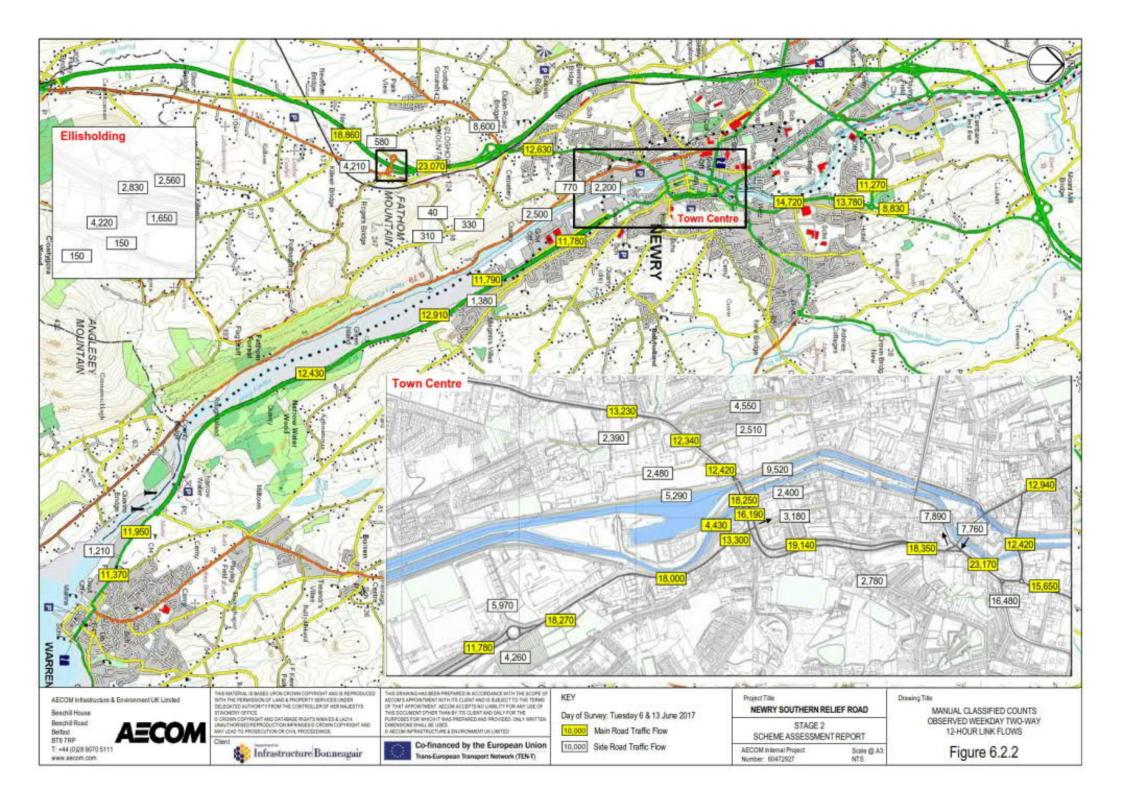


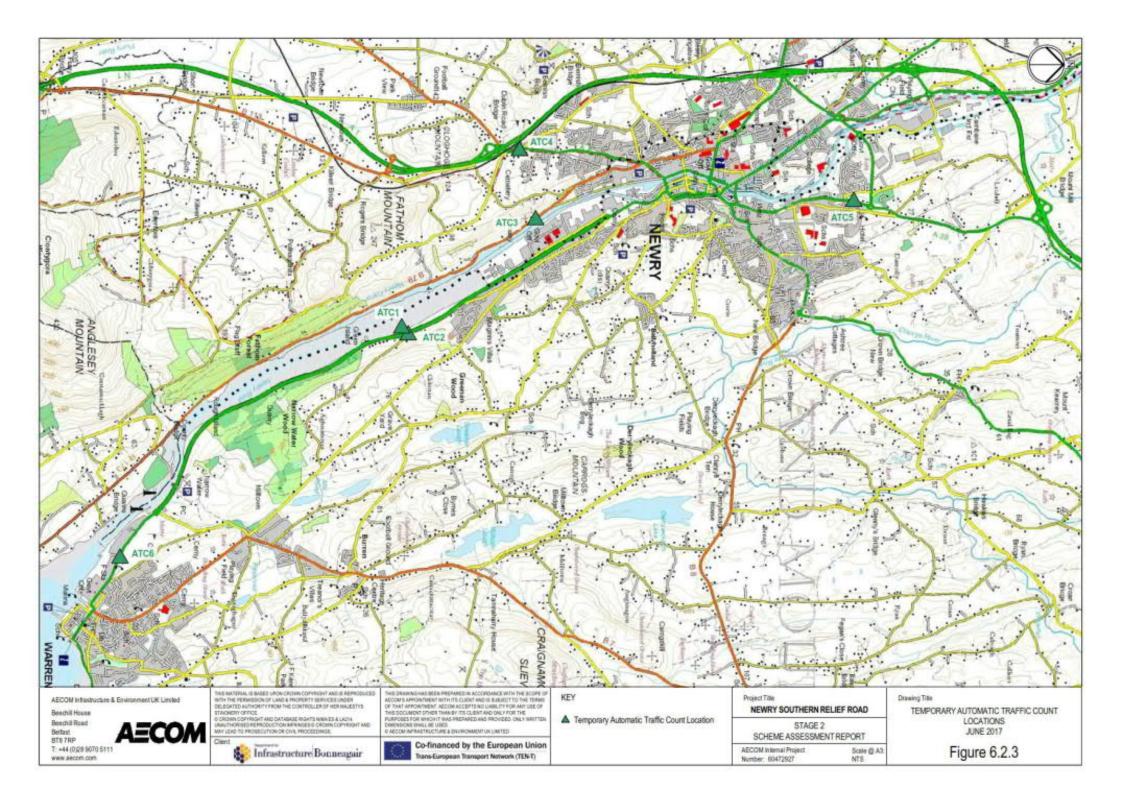
n	Project Title NEWRY SOUTHERN RELIEF ROAD
51	Co-financed by the European Union Trans-European Transport Network (TEN-T)
YF	Cient infrastructure Bonneagair
	Drawing Title
$\overline{\Box}$	STAGE 2 SCHEME ASSESSMENT REPORT GEOLOGY & SOILS
11	SOLID GEOLOGY
les / 2	KEY Bedrock Geology
se	Felsite Greywacke & Shale (Gala Group)
K	Gabbro Dyke Greywacke & Red Shale (Hawick Group)
	Granodiorite
Chambe	Granophyric Granite No Feature Identified
1 Grate	Dolerite & Basalt Intrusive Dyke
Football	SOURCE: GSN 1-250.000 SOLID GEOLOGY MAP OF NORTHERN INELAND
31	
, Bi	Route Options Indicative Ellisholding Vellow Route Junction Arrangement (coincident with all routes) Red Route A Class Road
200	Blue Route Option 1 Railway
	Options 2 & 3
115	Scale @ A3 1:20,000 AECOM Internal Project Number 60472927
	THIS MATERIAL IS BASED UPON CROWN COPYRIGHT AND IS REPRODUCED WITH THE PERMISSION OF LAND & PROPERTY SERVICES UNDER DELEGATED AUTHORITY FROM THE CONTROLLER OF HER MAJESTY'S STATIONERY OFFICE © CROWN COPYRIGHT AND DATABASE RIGHTS NIMA ES & LA214. UNAUTHORISED REPRODUCTION INFRINGES © CROWN COPYRIGHT AND MAY LEAD TO PROSECUTION OR CIVIL PROCEEDINGS.
	THIS DRAWING HAS BEEN PREPARED IN ACCORDANCE WITH THE SCOPE OF AECOMS APPOINTMENT WITH ITS CLIENT AND IS SUBJECT TO THE TERMS OF THAT APPOINTMENT. AECOM ACCEPTS NO LIABLITY FOR ANY USE OF THIS DOCUMENT OTHER THAN BY ITS CLIENT AND ONLY FOR THE PURPOSES FOR WHICH IT WAS PREPARED AND PROVIDED. ONLY WRITTEN DIMENSIONS SHALL BE USED. © AECOM INFRASTRUCTURE & ENVIRONMENT UK LIMITED
Ra	FIGURE 5.11.1
1516	REV. 0
PC A	AECOM Infrastructure & Environment UK Limited The Studio, Cleaver House 1-3 Donegall Square North Belfast BT1 5YE T: +44 (0)28 9060 7200 www.aecom.com
dell'an anti	31.46.66.056.786.786.7

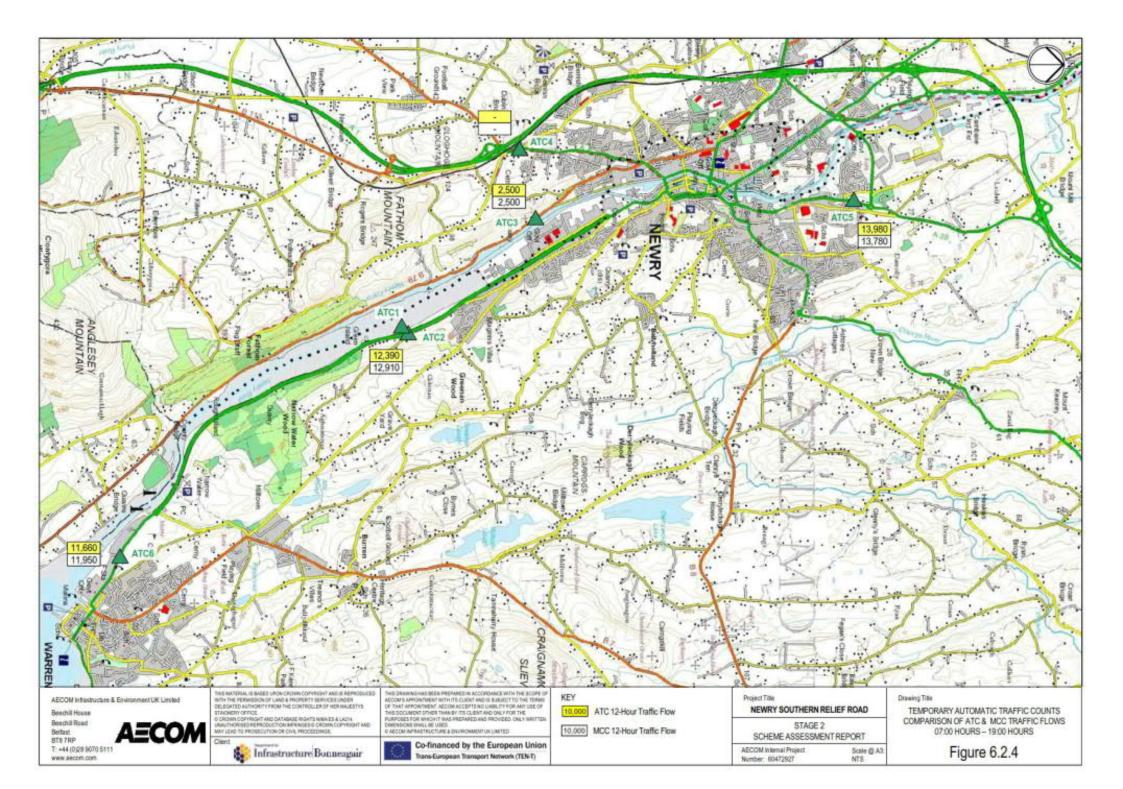


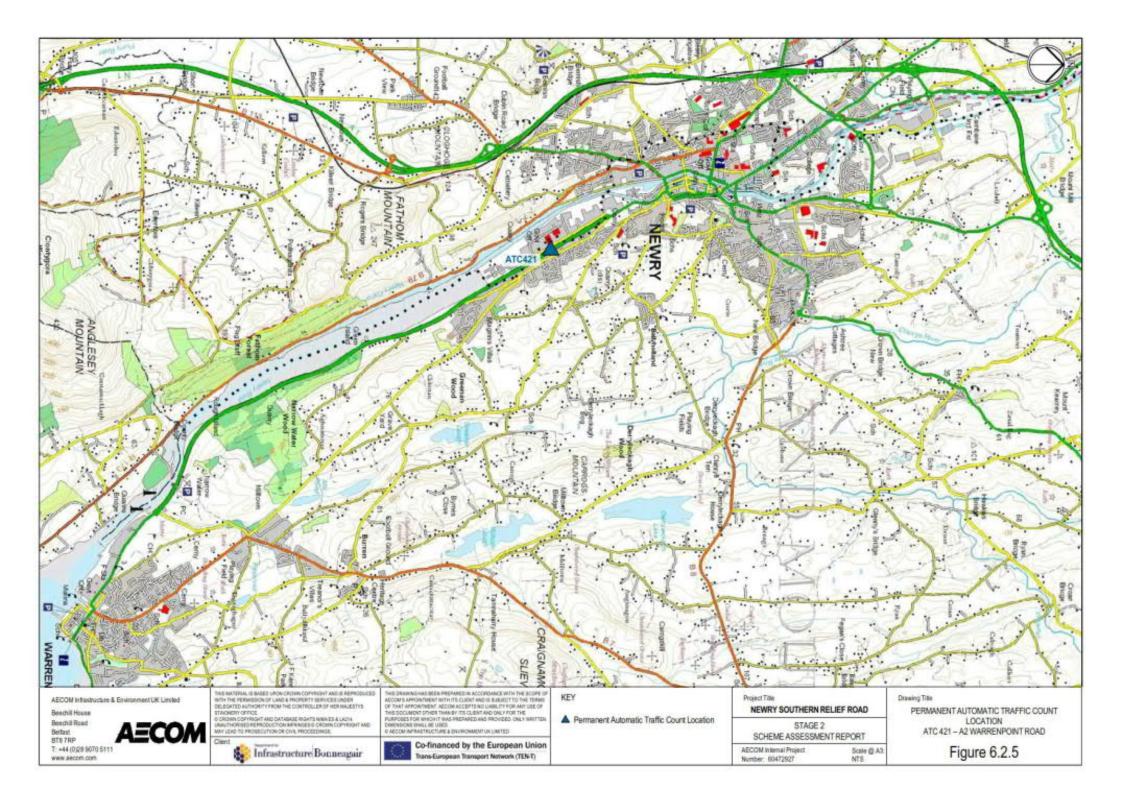

n A	Project Title NEWRY SOUTHERN RELIEF ROAD
20	Co-financed by the European Union Trans-European Transport Network (TEN-T)
12	Cient Infrastructure Bonneagair
1	Drawing Title
Milito	STAGE 2 SCHEME ASSESSMENT REPORT GEOLOGY & SOILS
N.	DRIFT GEOLOGY
ies	KEY Superficial Geology
se	Alluvium No Feature Identified Bedrock at or near Recent Marine
. L.	the surface Deposit
1 Th	Raised Beach
Chember	Till
Grante	SOURCE: GSNI 1:250,000 DRIFT GEOLOGY MAP OF NORTHERN IRELAND
Football	
and a second	Route Options
BI	Yellow Route Vellow Route Vellow Route
15 all	Red Route A Class Road Blue Route
Nº X	Option 1 Railway Blue Route Contemptional Border
-7.	Options 2 & 3 International Border
115	1:20,000
1 ph	AECOM Internal Project Number 60472927
1	THIS MATERIAL IS BASED UPON CROWN COPYRIGHT AND IS REPRODUCED WITH THE PERMISSION OF LAND & PROPERTY SERVICES UNDER DELEGATED AUTHORITY FROM THE CONTROLLER OF HER MAJESTY'S STATIONERY OFFICE © CROWN COPYRIGHT AND DATABASE RIGHTS NIMA ES & LA214. UNAUTHORISED REPRODUCTION INFRINGES © CROWN COPYRIGHT AND MAY LEAD TO PROSECUTION OR CIVIL PROCEEDINGS.
	THIS DRAWING HAS BEEN PREPARED IN ACCORDANCE WITH THE SCOPE OF ACCOMS APPOINTMENT WITH ITS CLIENT AND IS SUBJECT TO THE TERMS OF THAT APPOINTMENT. AECOM ACCEPTS NO LIABLITY FOR ANY USE OF THIS DOCUMENT OTHER THAN BY ITS CLIENT AND ONLY FOR THE PURPOSES FOR WHICH IT WAS PREPARED AND PROVIDED. ONLY WRITTEN DIMENSIONS SHALL BE USED.
1 OP	© AECOM INFRASTRUCTURE & ENVIRONMENT UK LIMITED
Ra	FIGURE 5.11.2
12 L	REV. 0
	AECOM Infrastructure & Environment UK Limited The Studio, Cleaver House 1-3 Donegall Square North Belfast BT1 5YE
il l	T: +44 (0)28 9060 7200 www.aecom.com

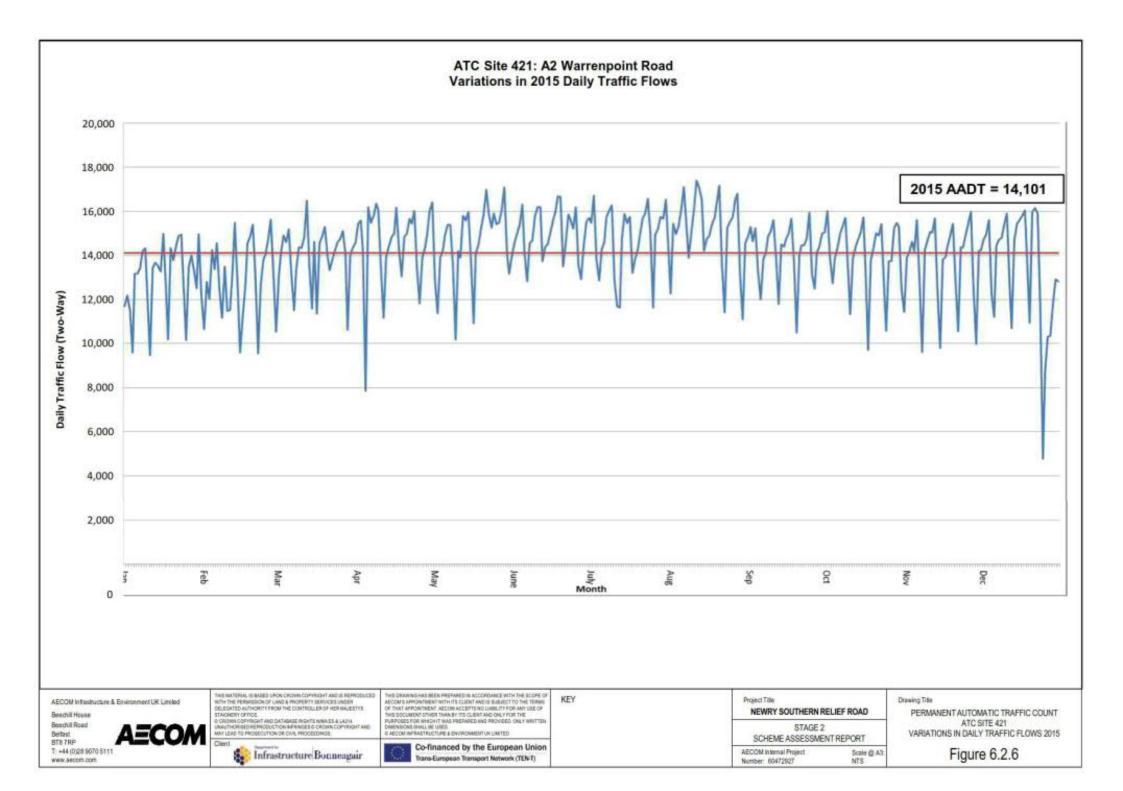


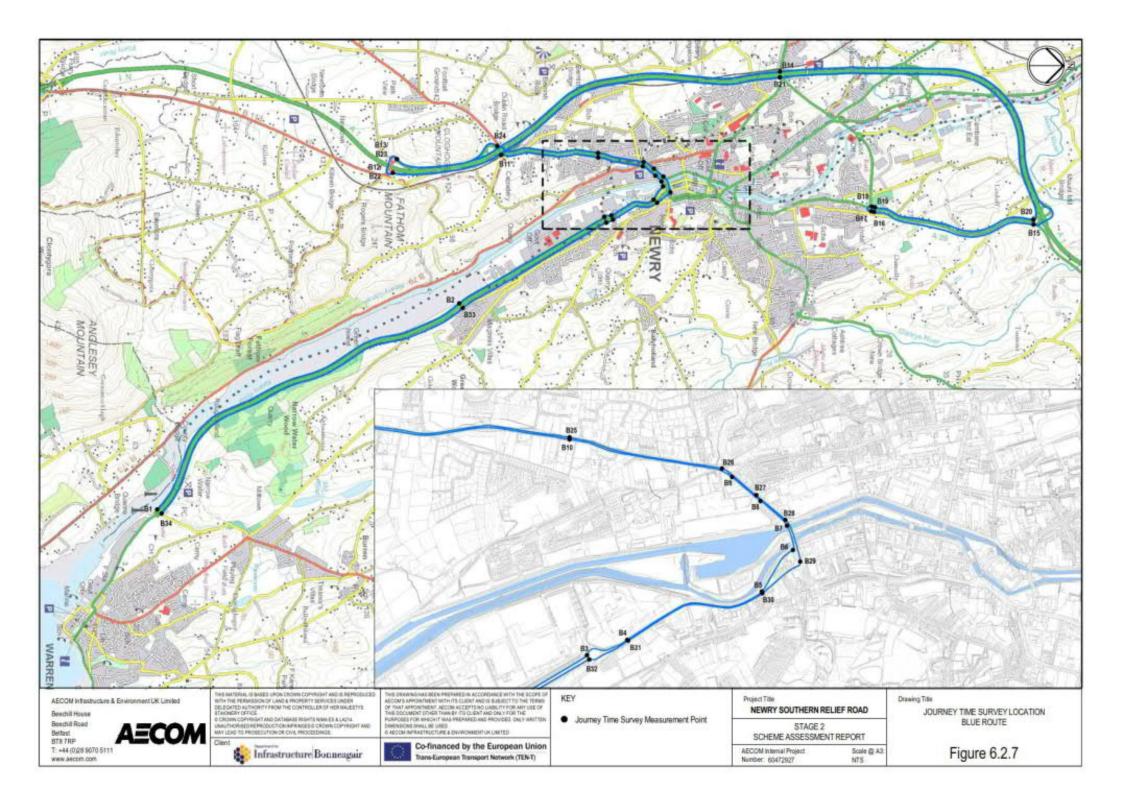


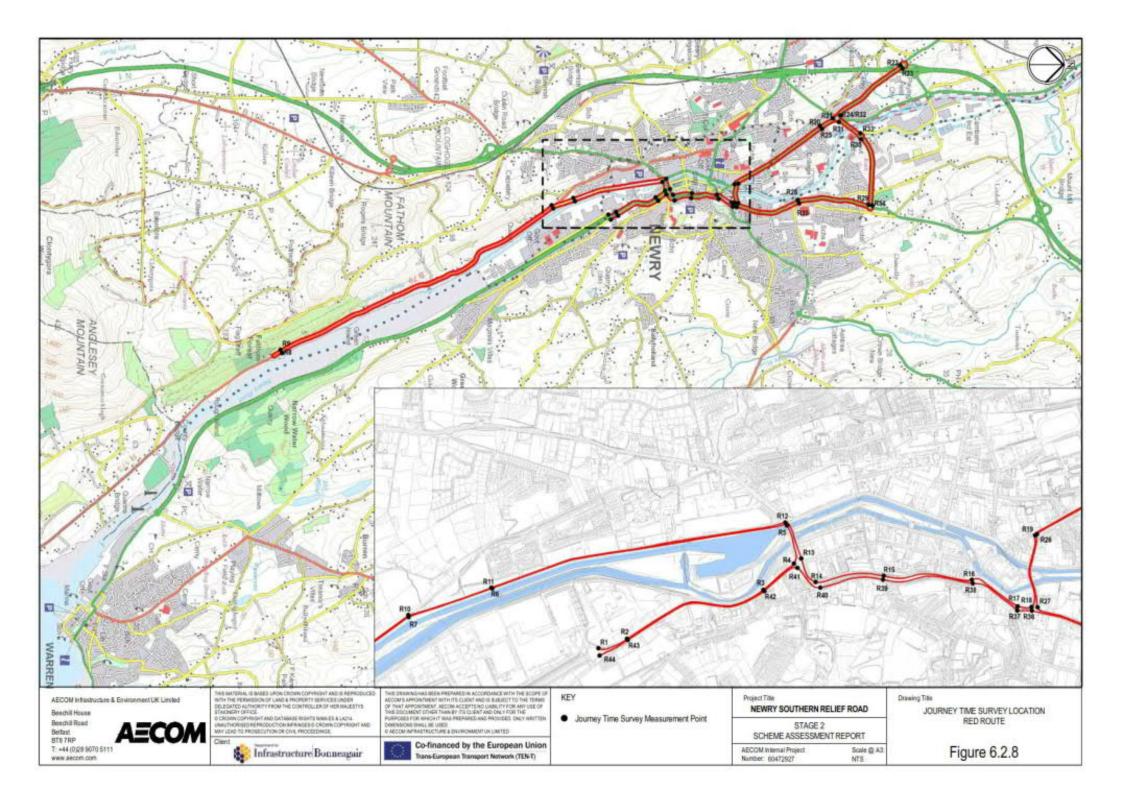

formation	Project Title NEWRY SOUTHERN
Quarry	RELIEF ROAD
iravel Pit	Co-financed by the European Union Trans-European Transport Network (TEN-T)
Quarry	Cient Infrastructure Bonneagair
Quarry	Drawing Title STAGE 2 SCHEME ASSESSMENT REPORT GEOLOGY & SOILS
Quarry	LICENSED MINERAL EXTRACTION KEY Mineral Extraction Site Historical Mineral Extraction Site
Quarry	Site of Local Nature Conservation Importance (SLNCI) [Geological]
Quarry	Area of Special Scientific Interest (ASSI)[Geological]
Quarry	Source: GSNI Geoindex & NIEA Historic Land Use Layer Route Options
Quarry	Yellow Route Vellow Route Indicative Ellisholding Junction Arrangement (coincident with all routes)
B	A Class Road Option 1 Railway Blue Route Options 2 & 3
1GO	Scale @ A3 1:20,000 AECOM Internal Project Number 60472927
	THIS MATERIAL IS BASED UPON CROWN COPYRIGHT AND IS REPRODUCED WITH THE PERMISSION OF LAND & PROPERTY SERVICES UNDER DELEGATED AUTHORITY FROM THE CONTROLLER OF HER MAJESTY'S STATIONERY OFFICE © CROWN COPYRIGHT AND DATABASE RIGHTS NIMA ES & LA214. UNAUTHORISED REPRODUCTION INFRINGES © CROWN COPYRIGHT AND MAY LEAD TO PROSECUTION OR CMIL PROCEEDINGS.
	THIS DRAWING HAS BEEN PREPARED IN ACCORDANCE WITH THE SCOPE OF AECOMS APPOINTMENT WITH ITS CLIENT AND IS SUBJECT TO THE TERMS OF THAT APPOINTMENT. AECOM ACCEPTS NO LIABLITY FOR ANY USE OF THIS DOCUMENT OTHER THAN BY ITS CLIENT AND ONLY FOR THE PURPOSES FOR WHICH IT WAS PREPARED AND PROVIDED. ONLY WRITTEN DIMENSIONS SHALL BE USED. © AECOM INFRASTRUCTURE & ENVIRONMENT UK LIMITED
Ra	FIGURE 5.11.4
15	REV, 0
	AECOM Infrastructure & Environment UK Limited The Studio, Cleaver House 1-3 Donegall Square North Belfast BT1 5YE T: +44 (0)28 9070 5111 www.aecom.com

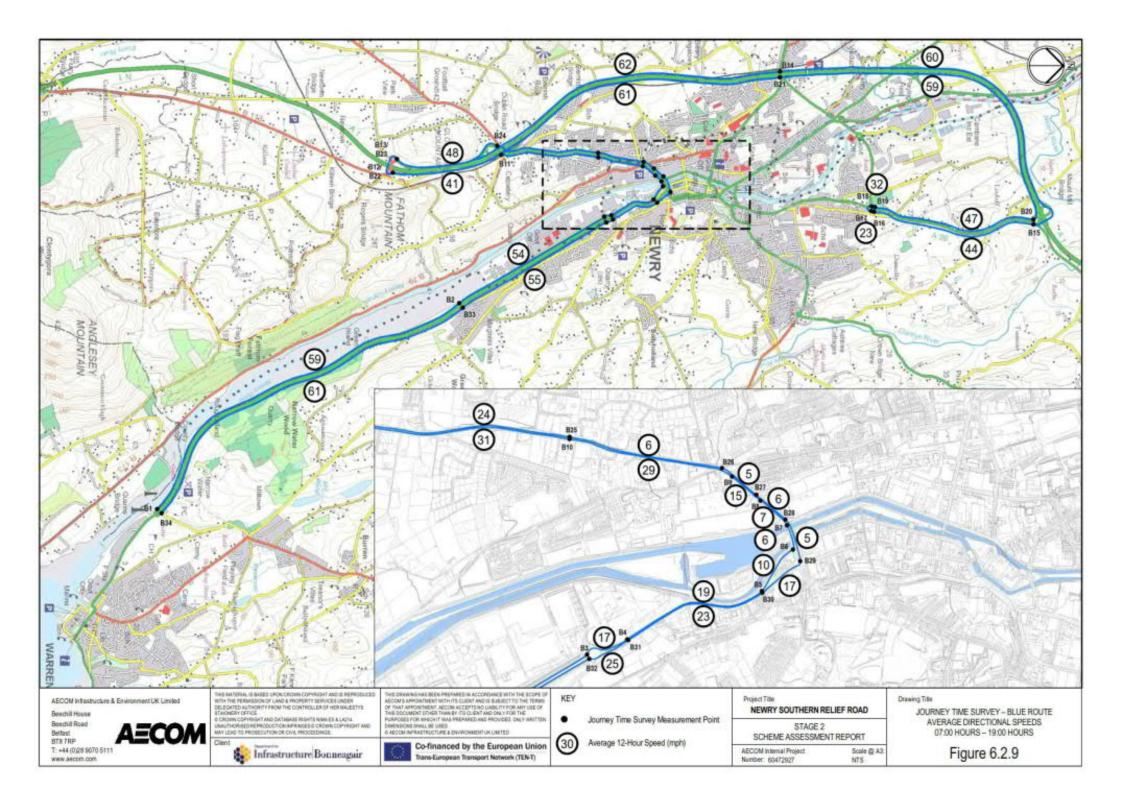


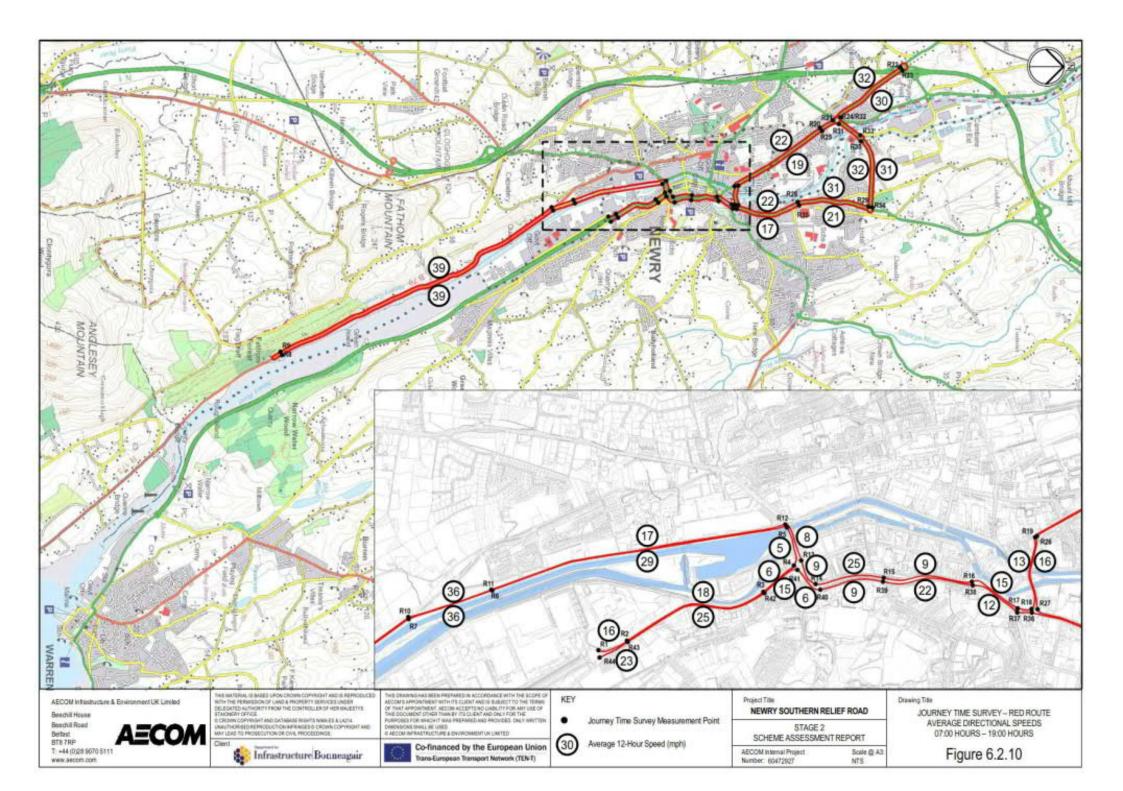


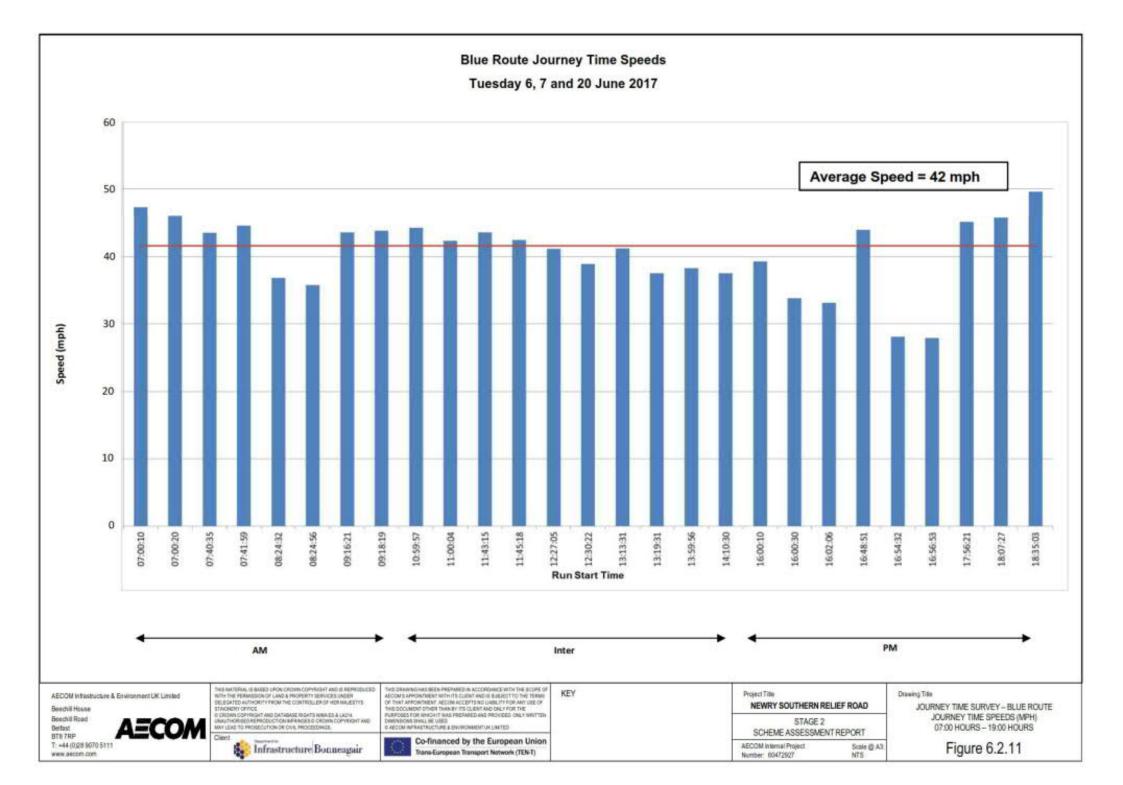


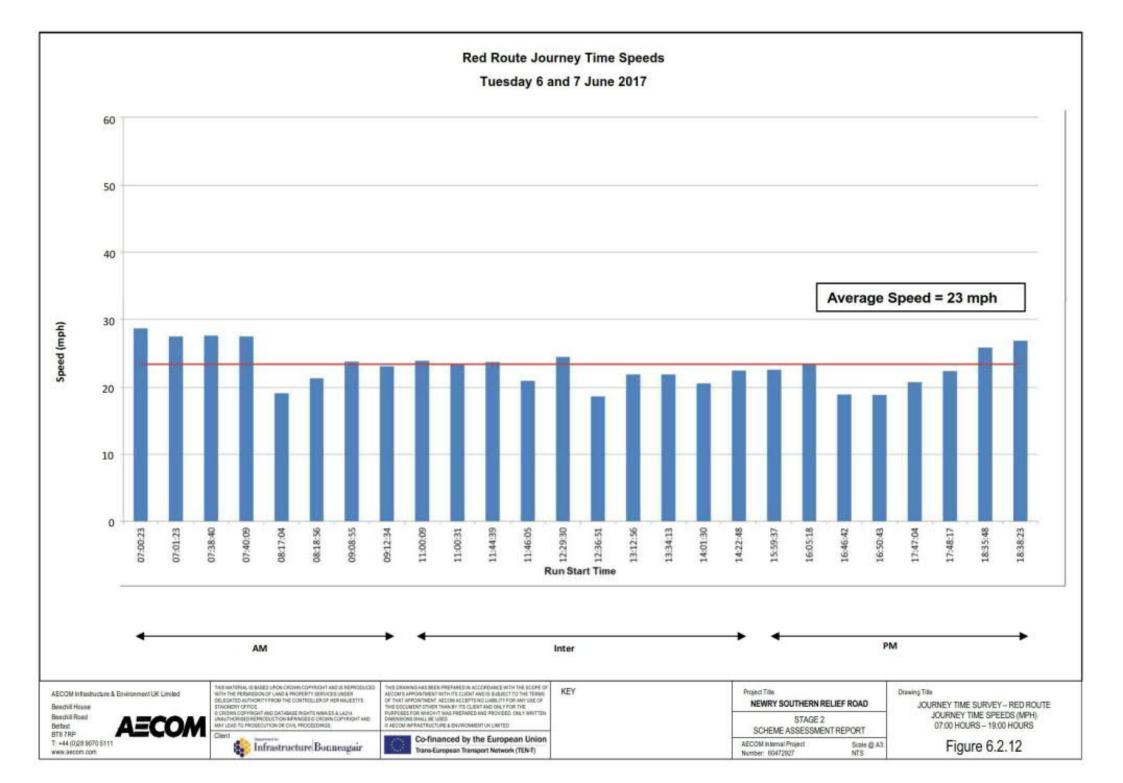


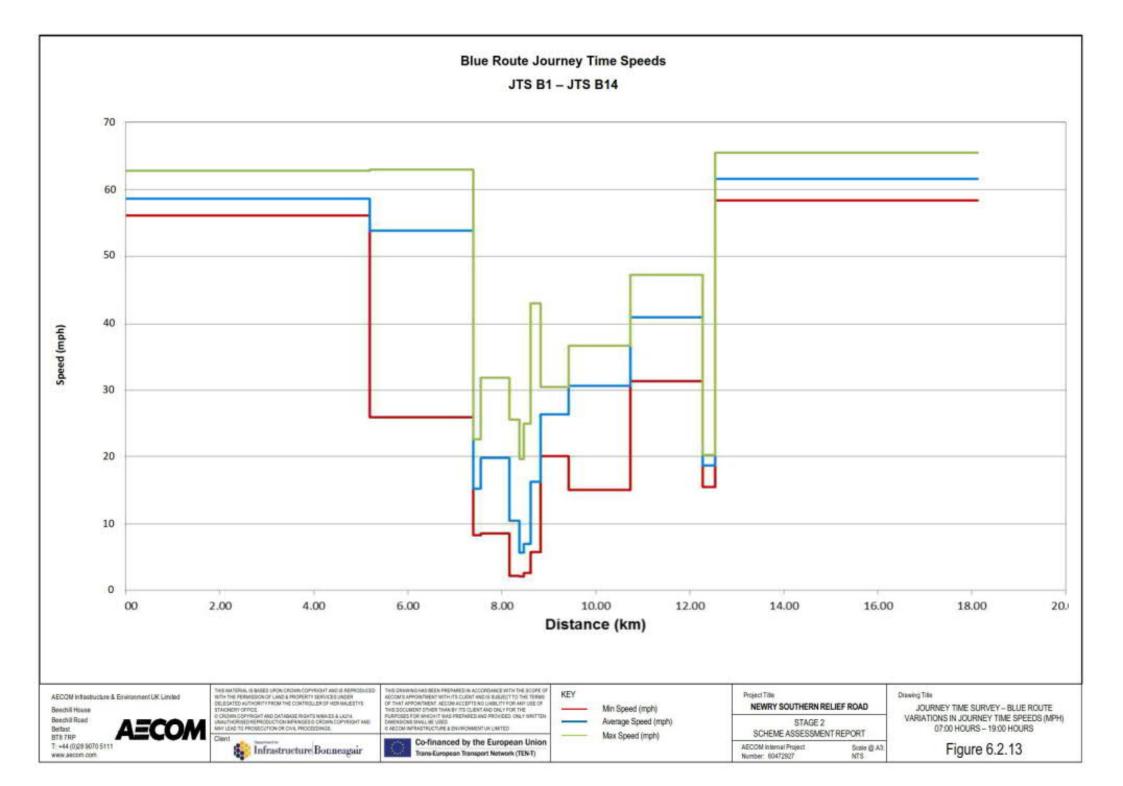


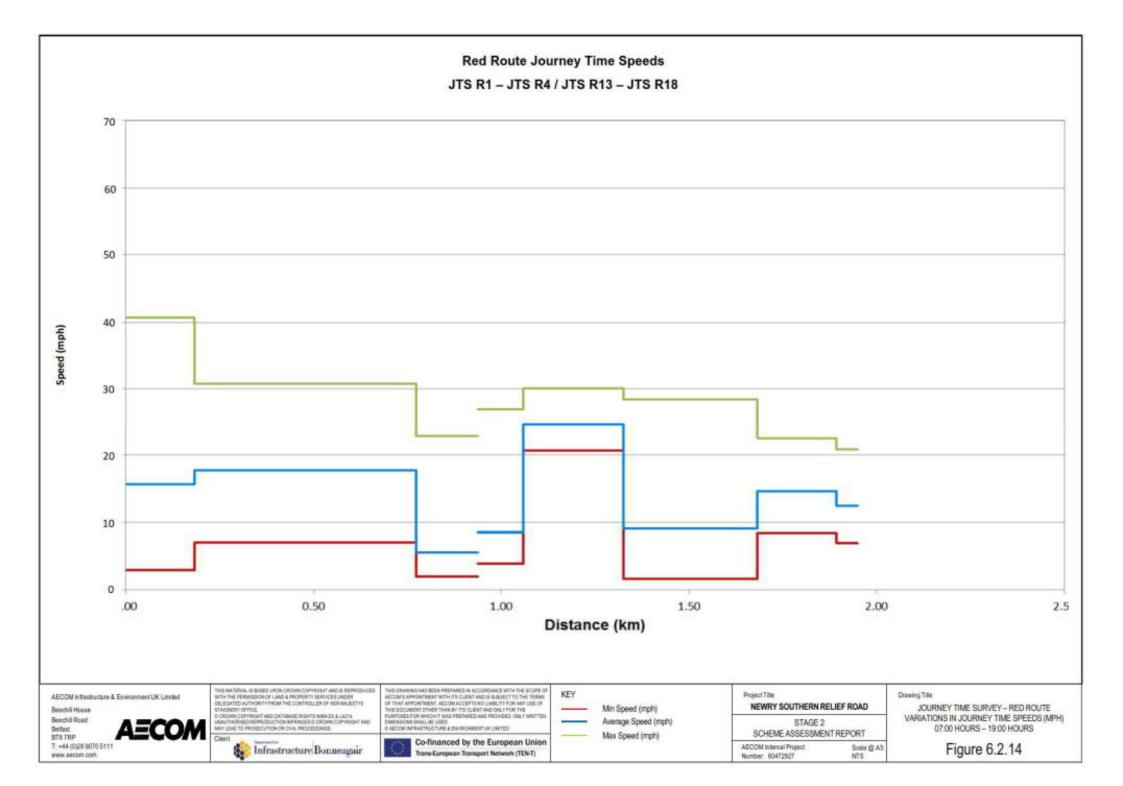


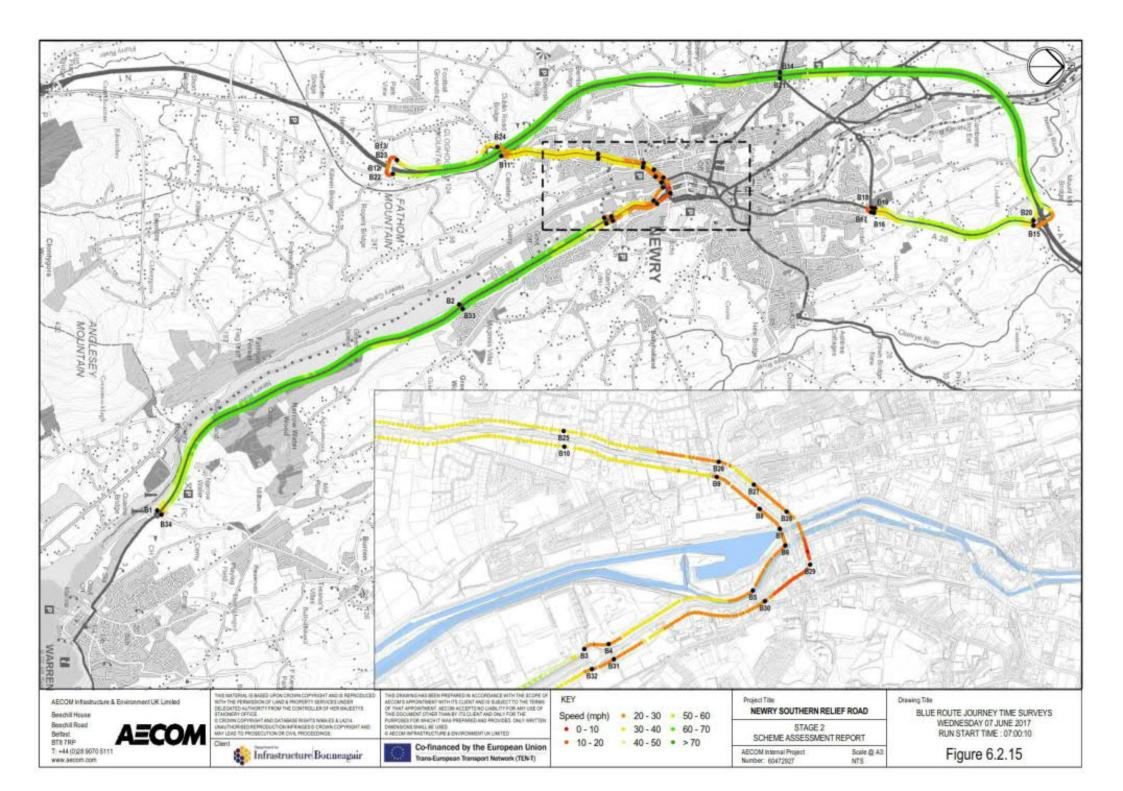


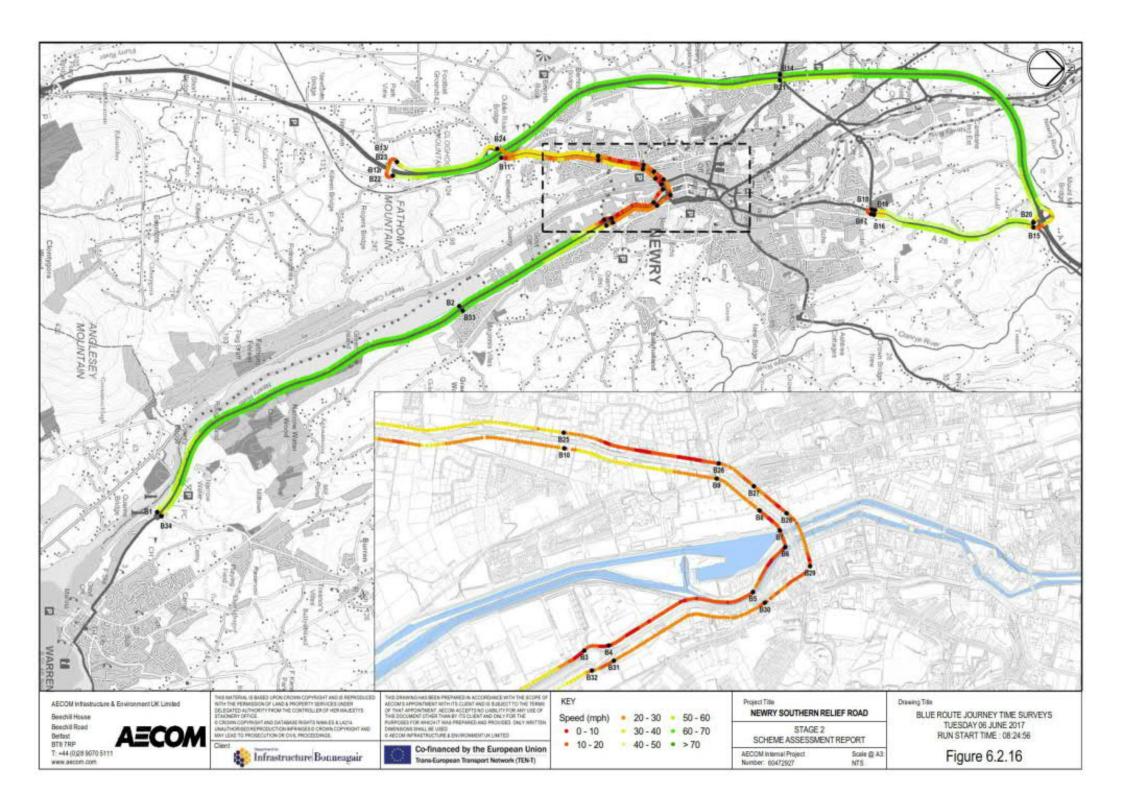


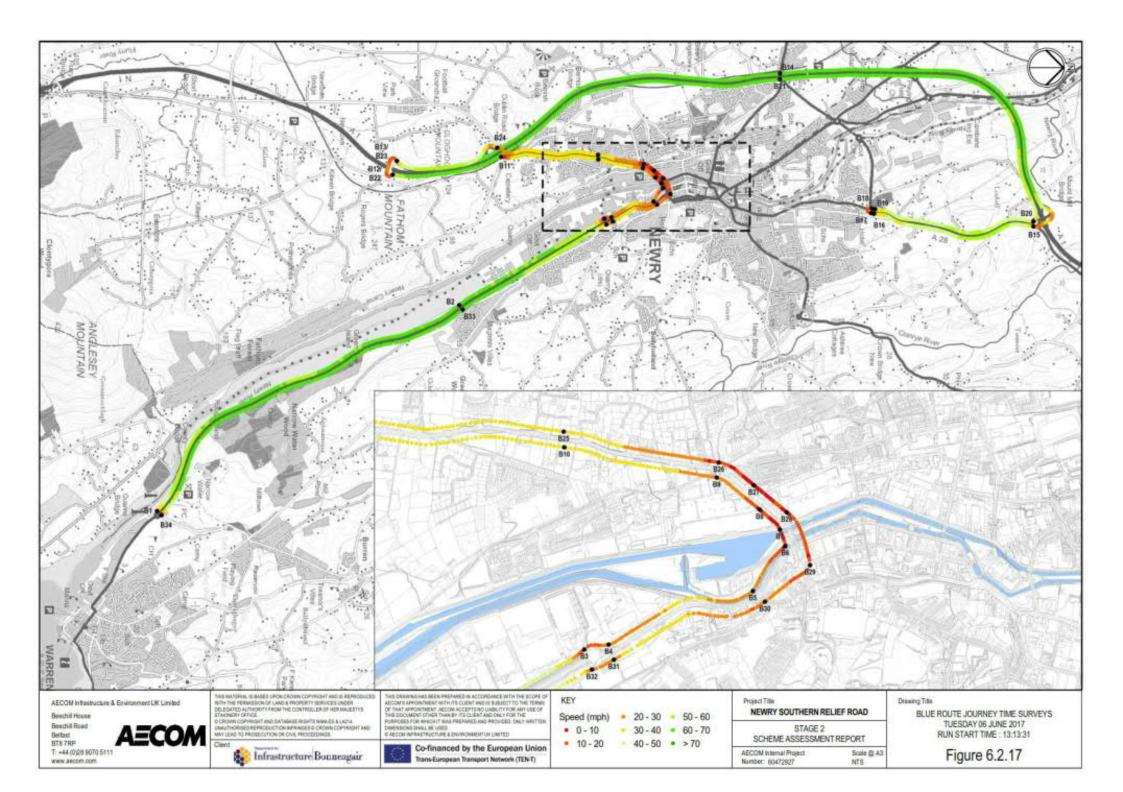


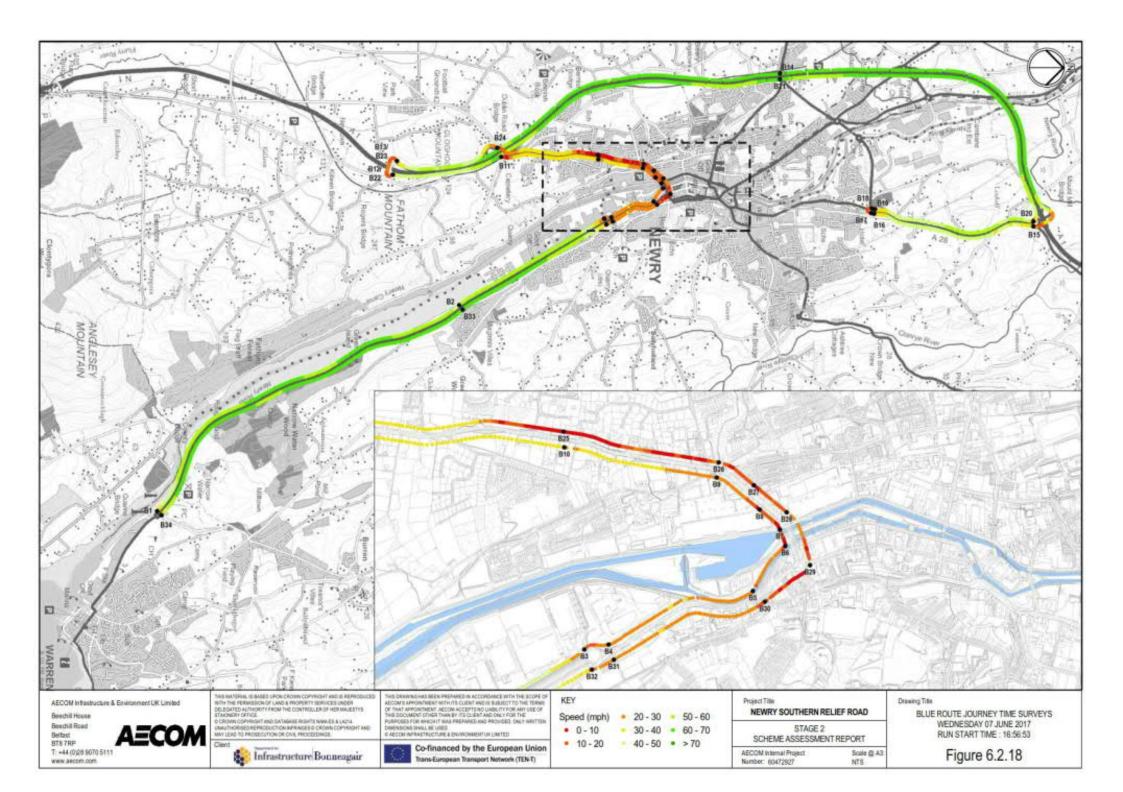


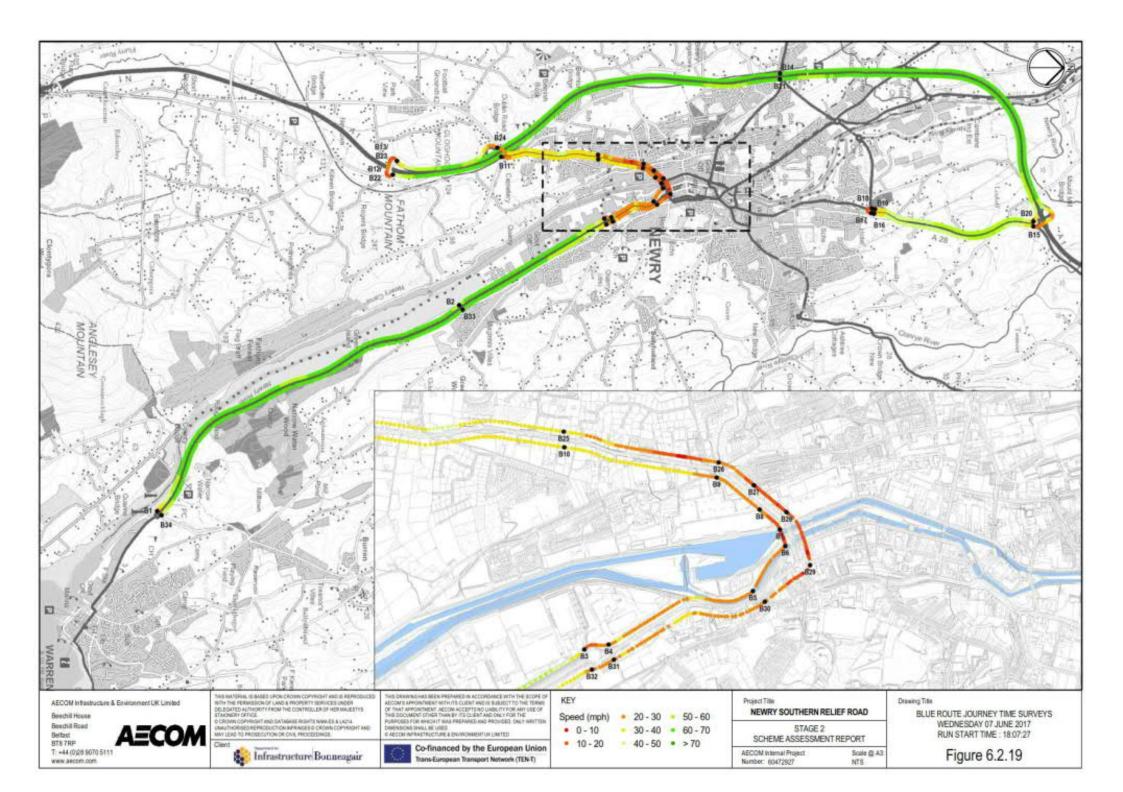


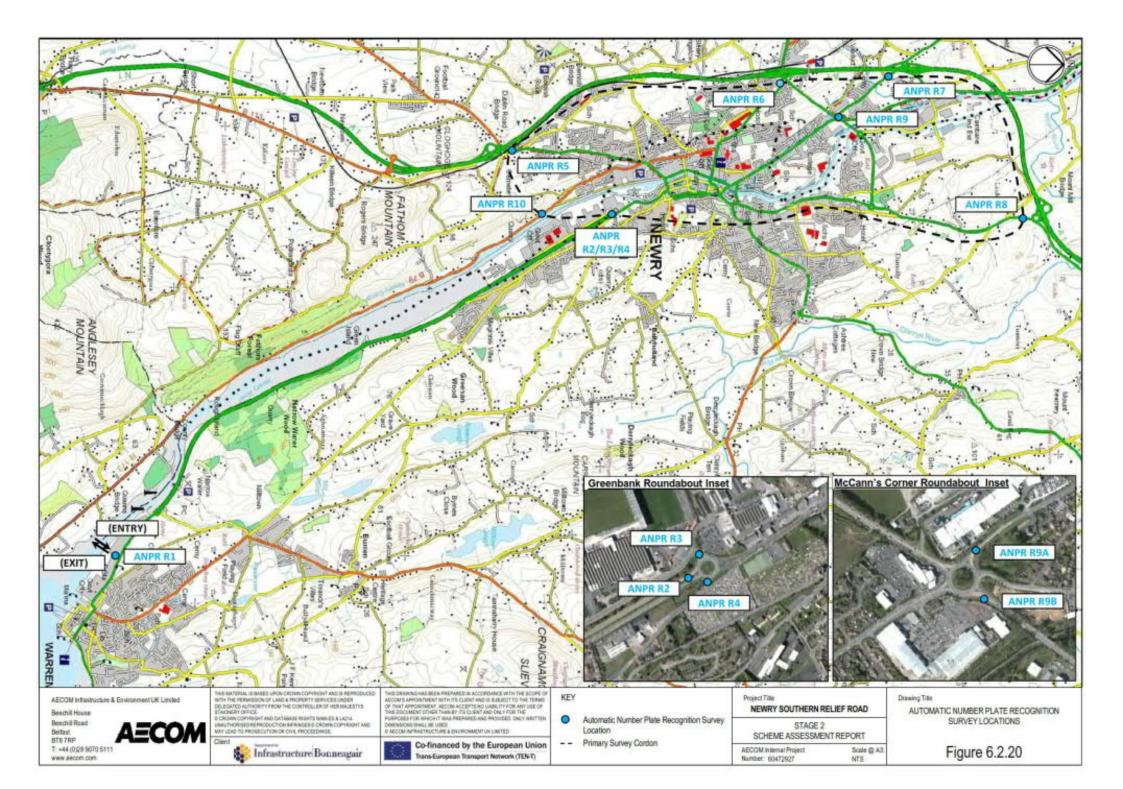


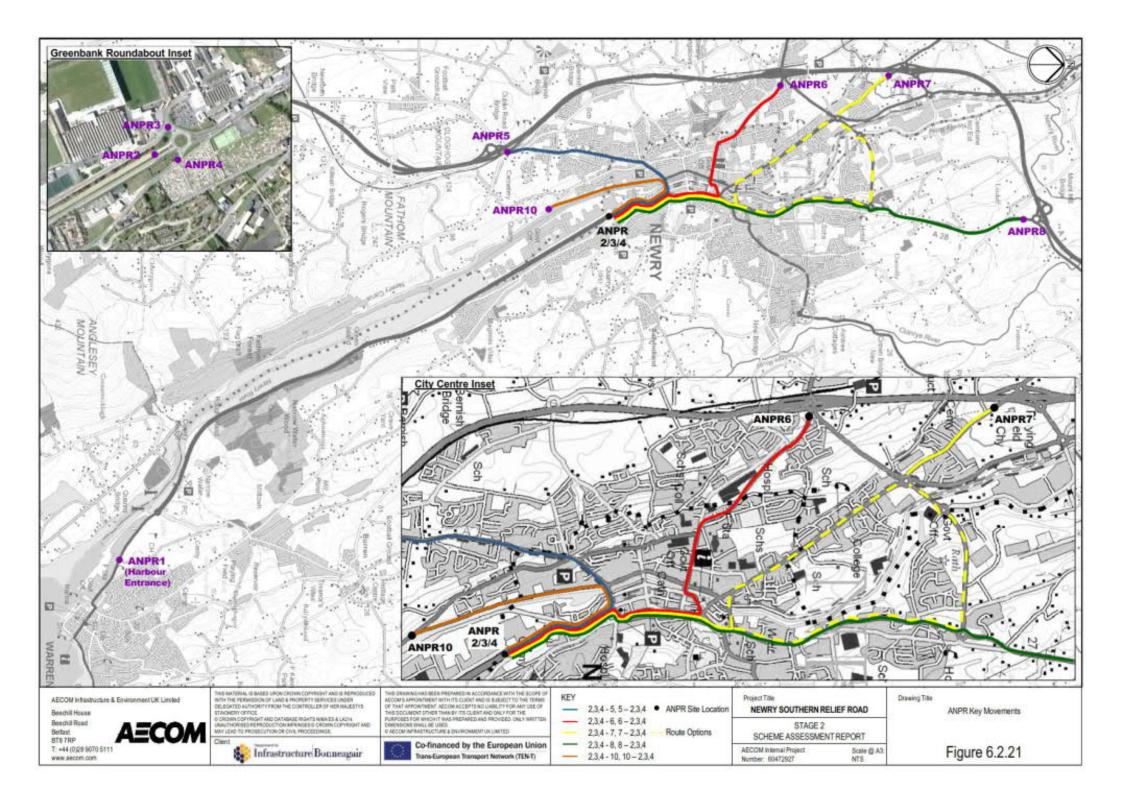


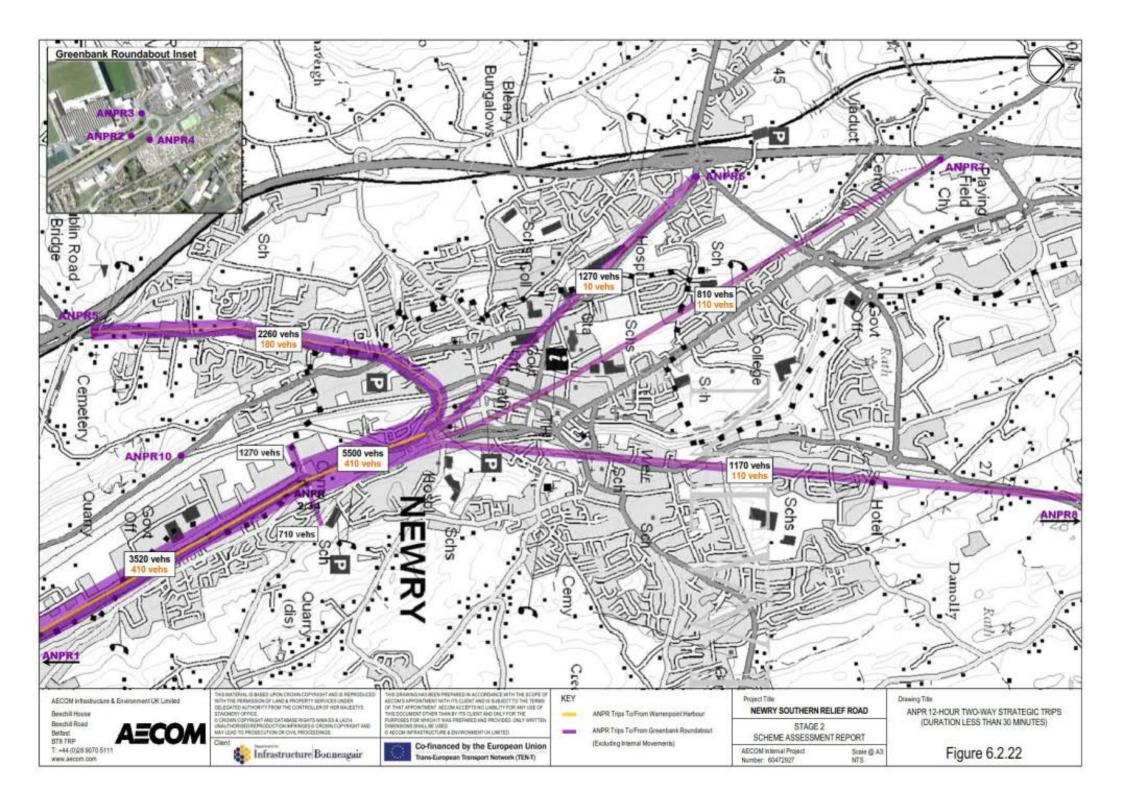


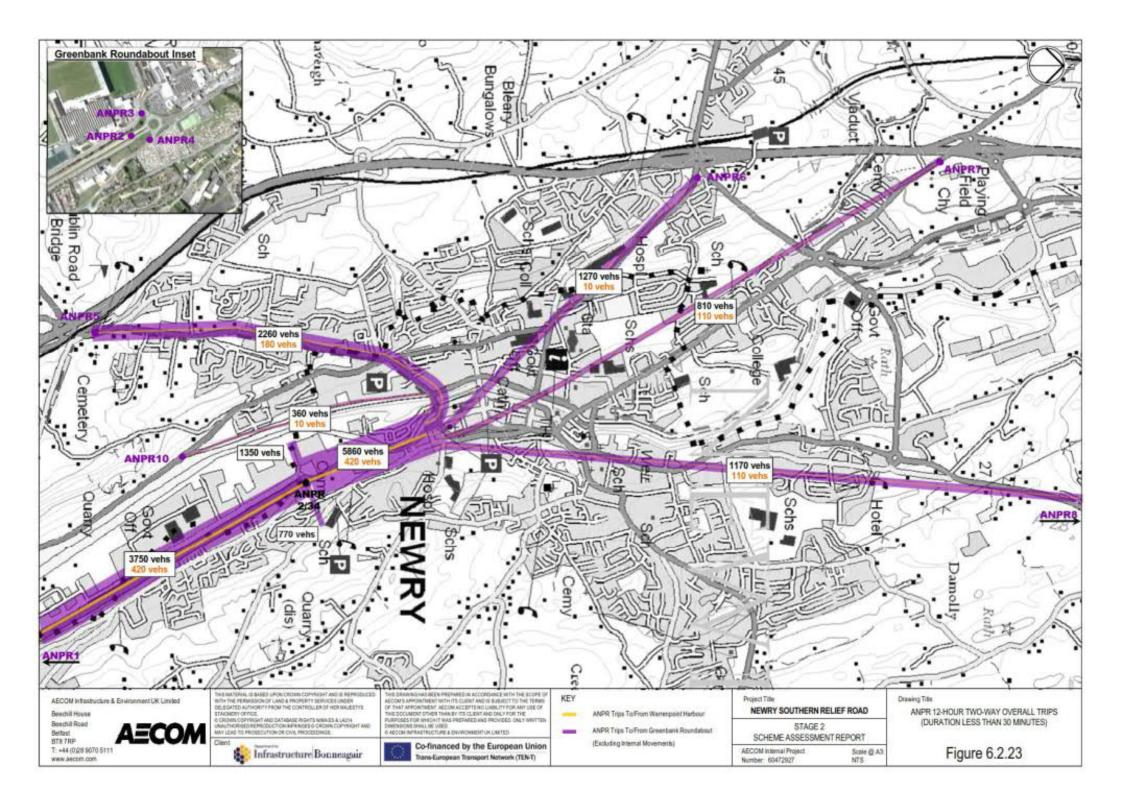


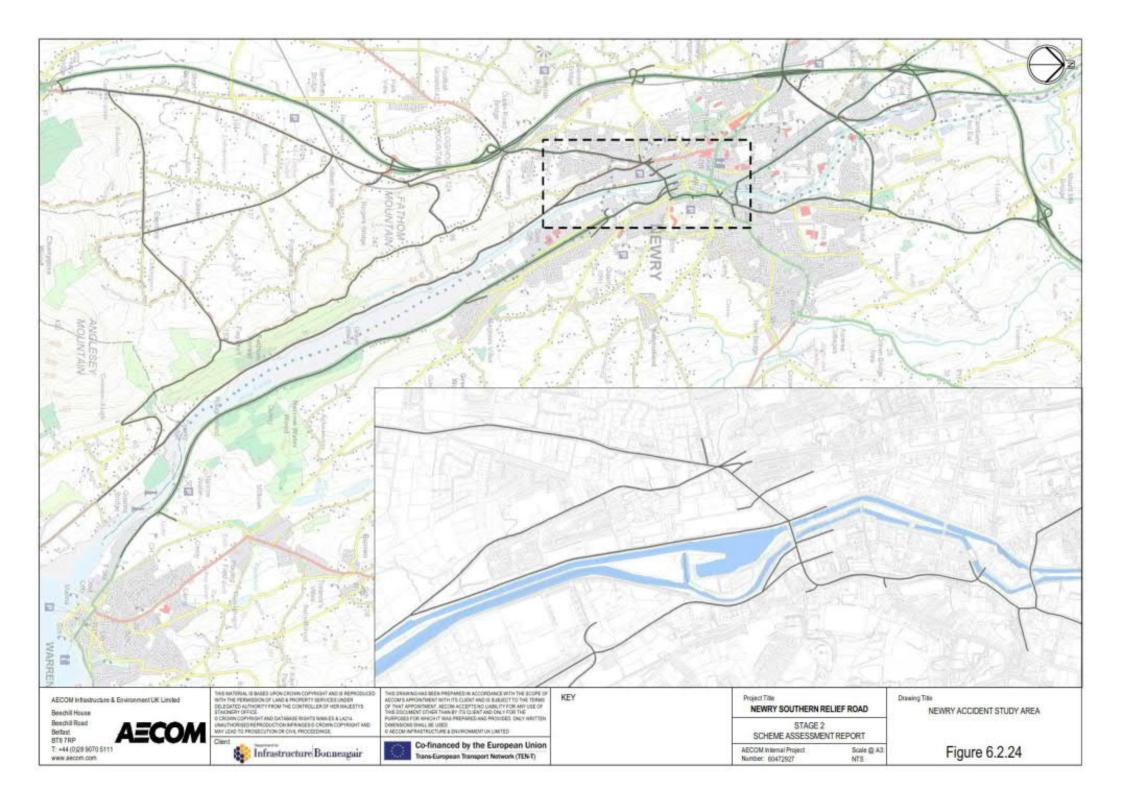


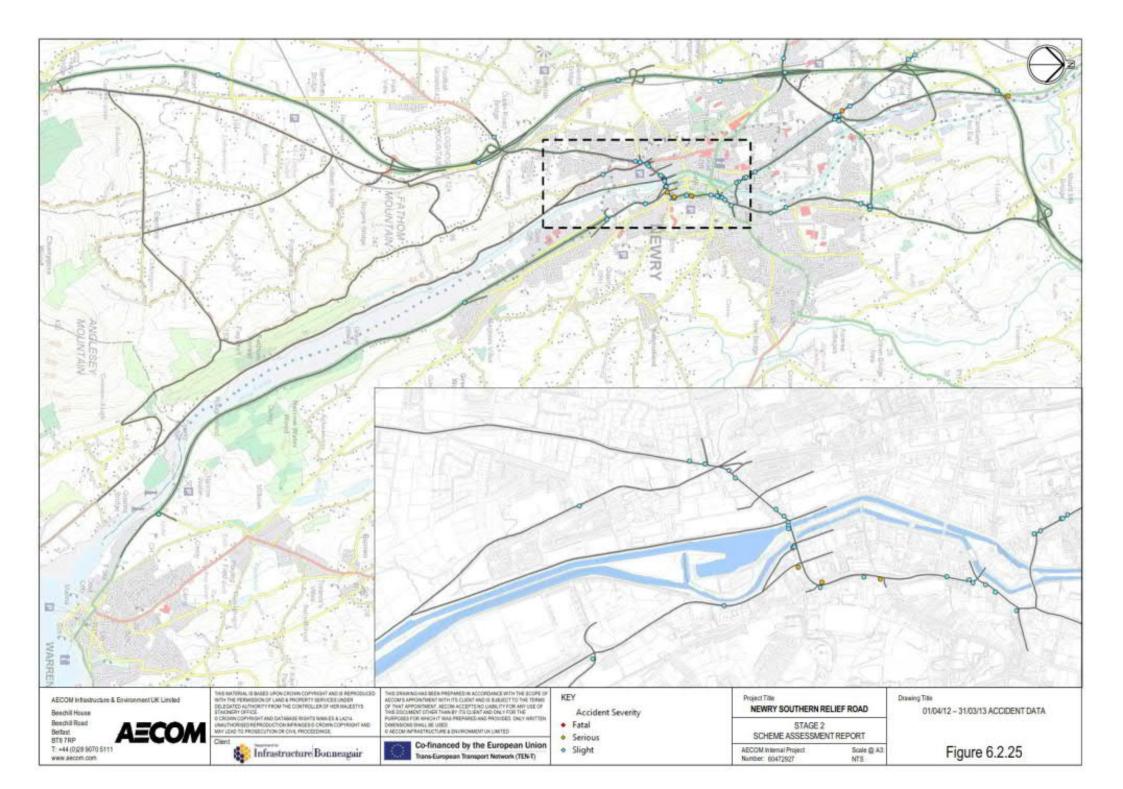


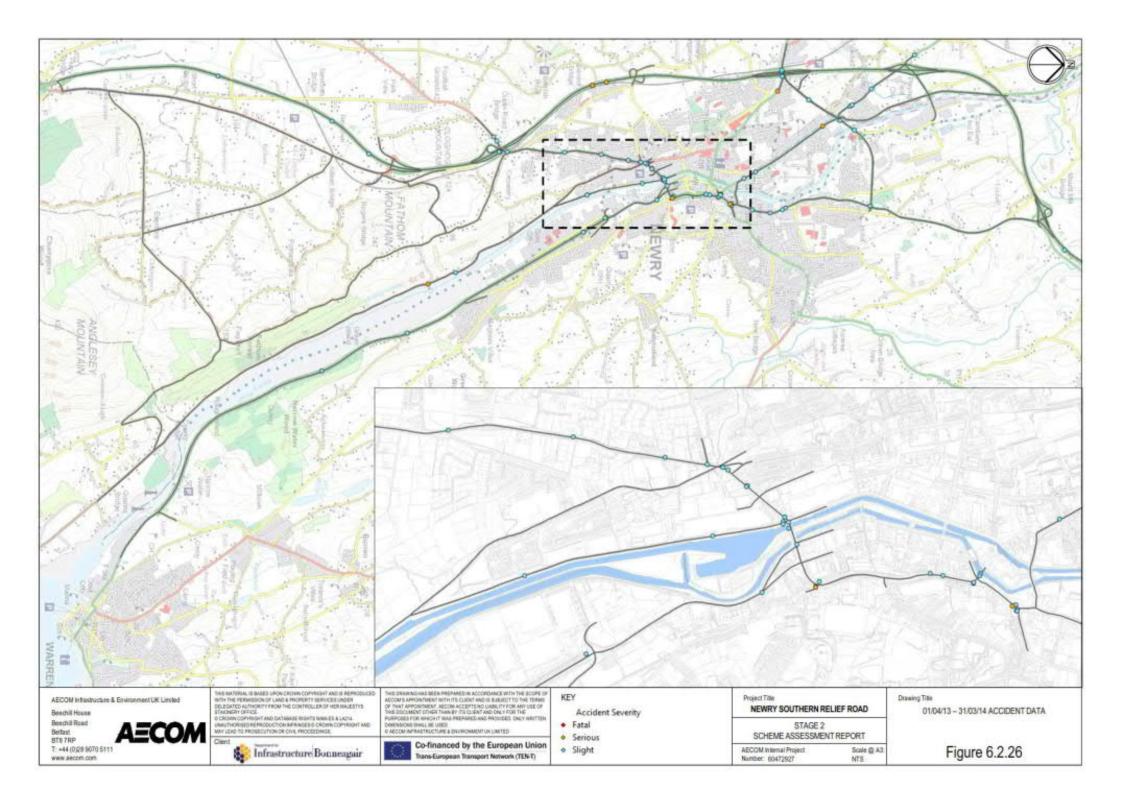


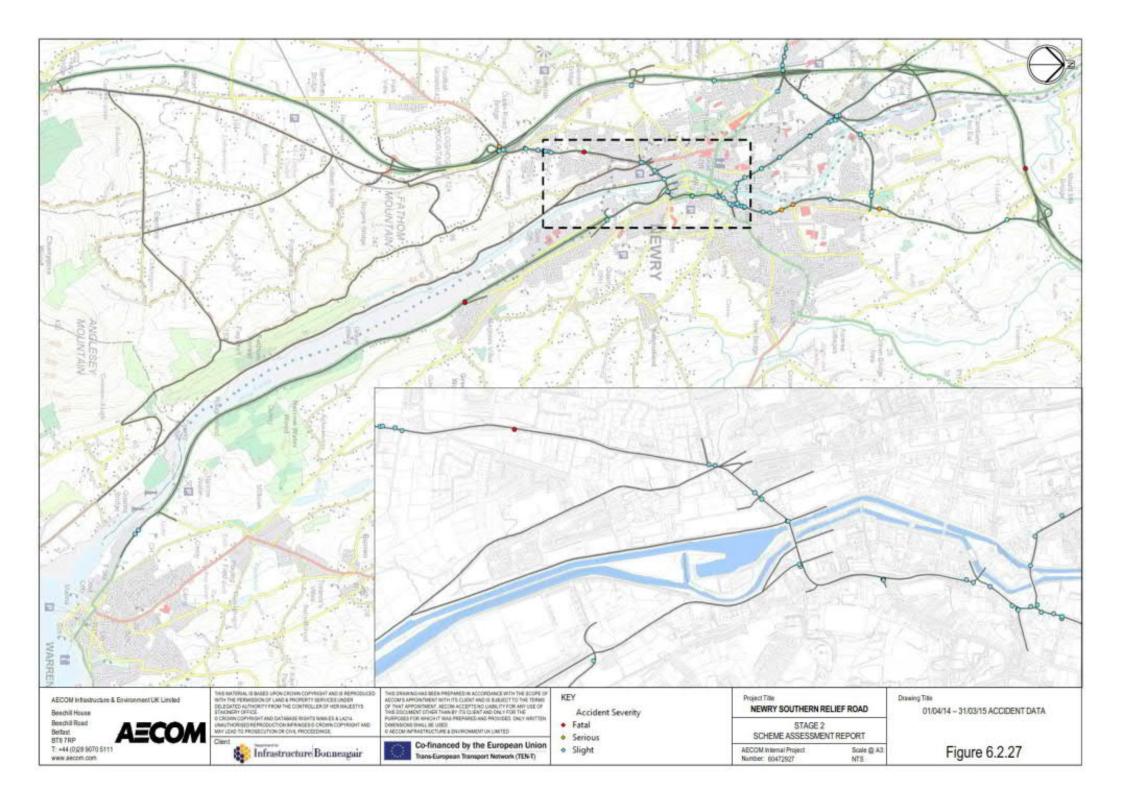


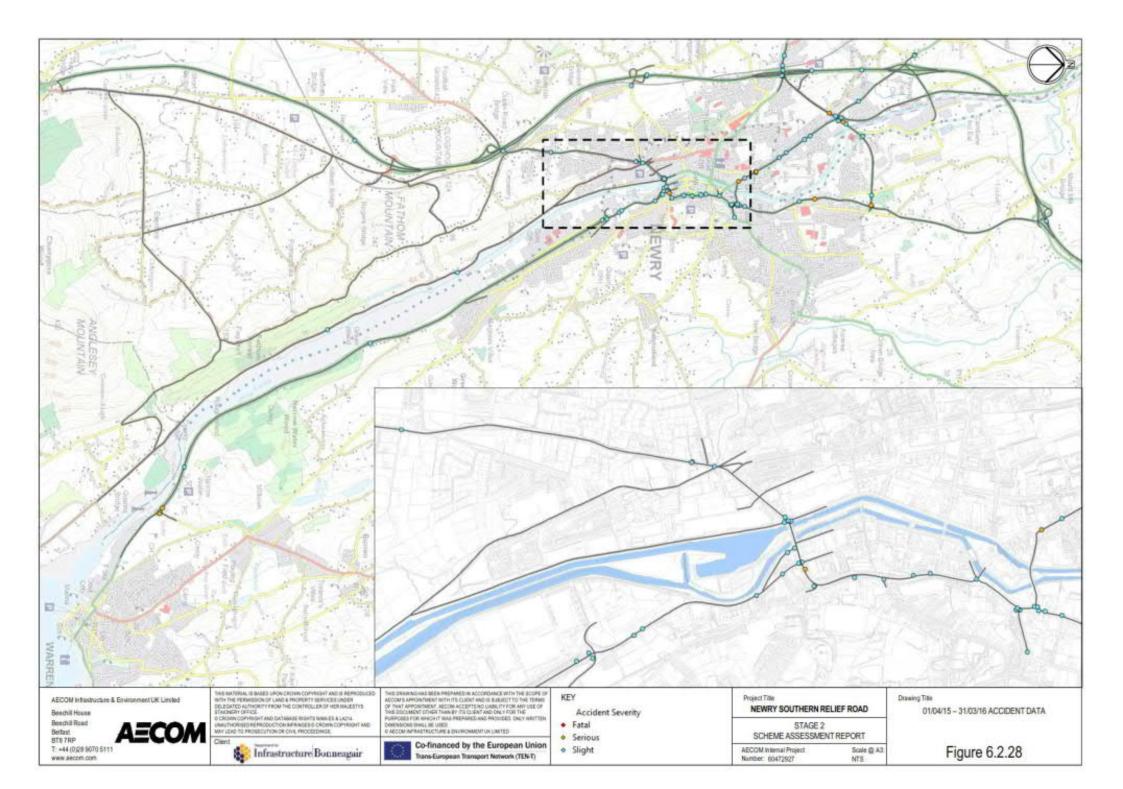


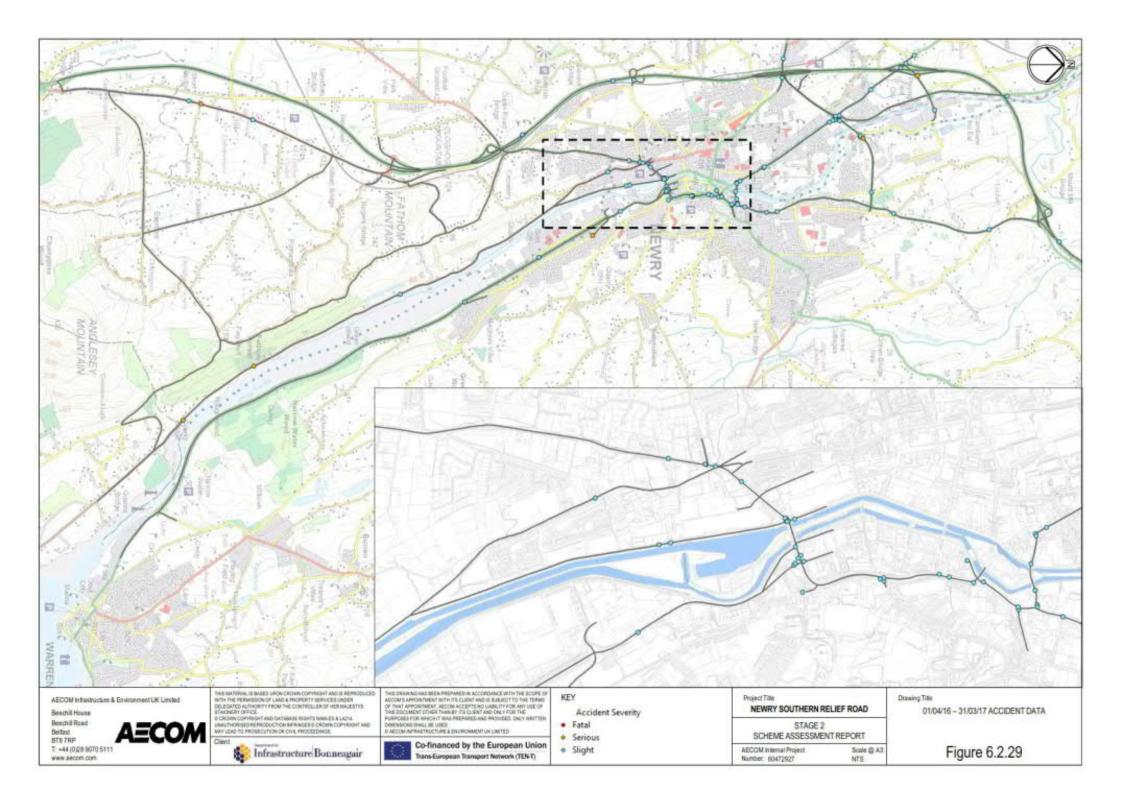


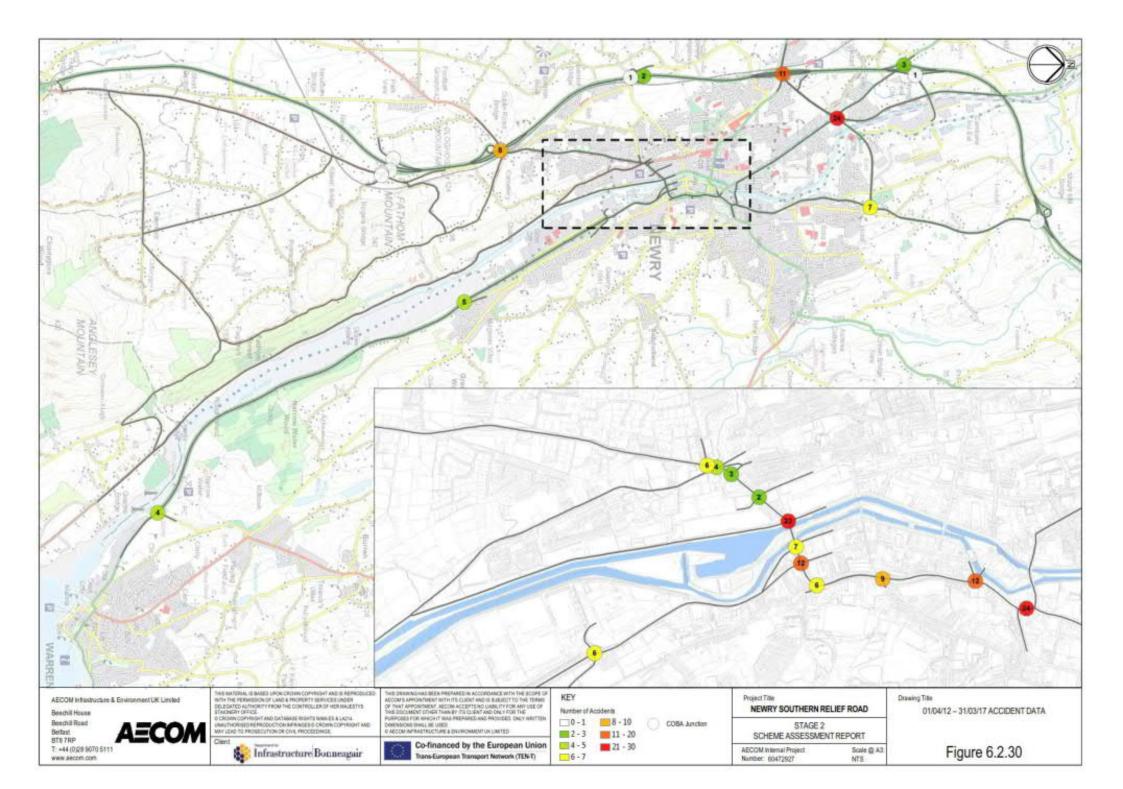


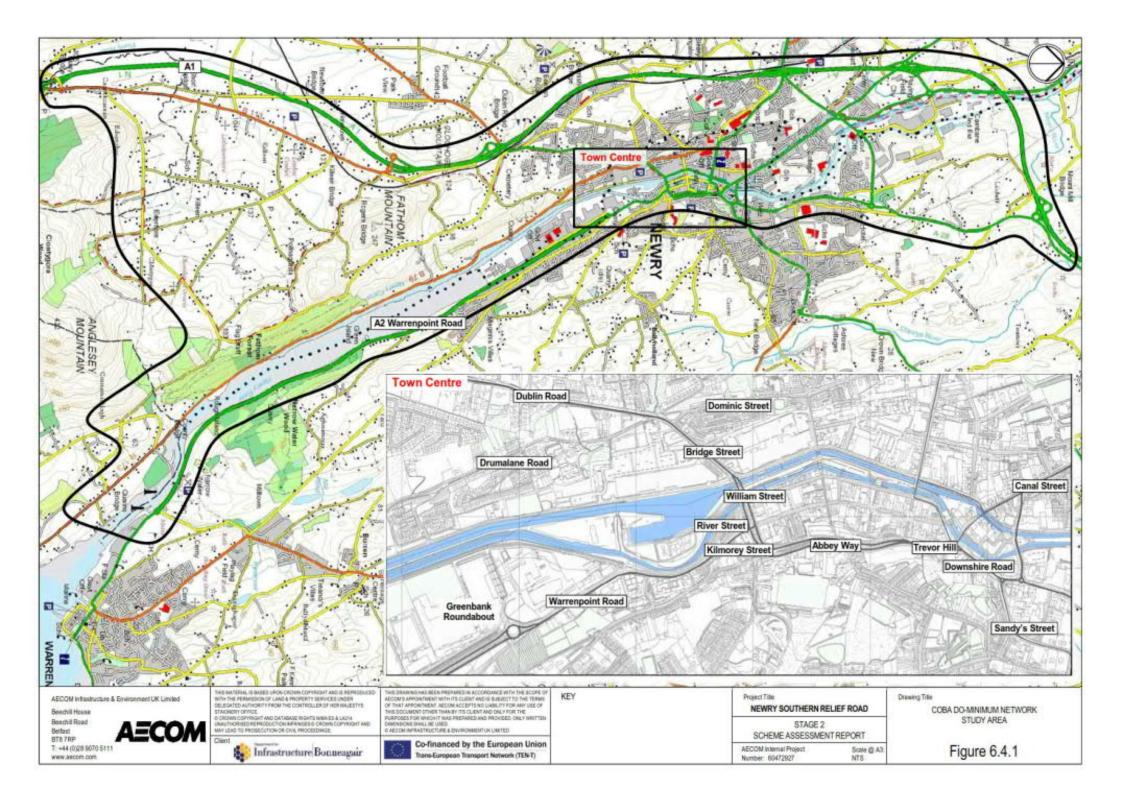


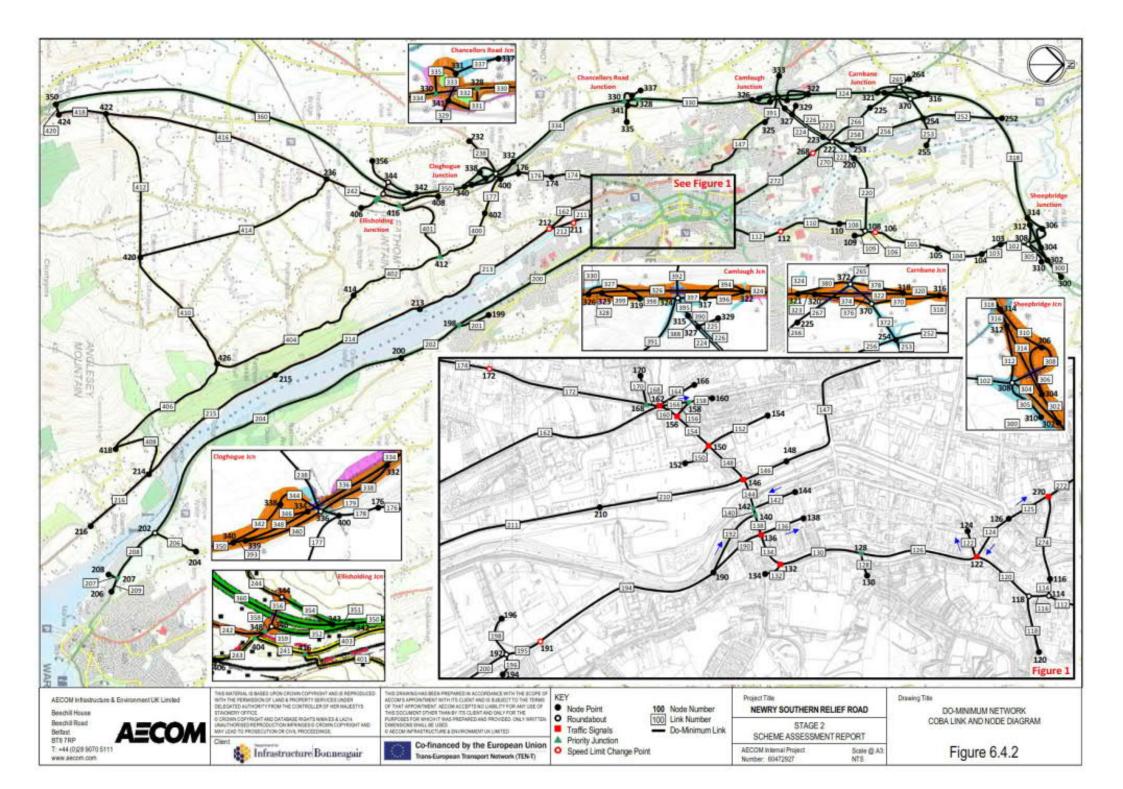


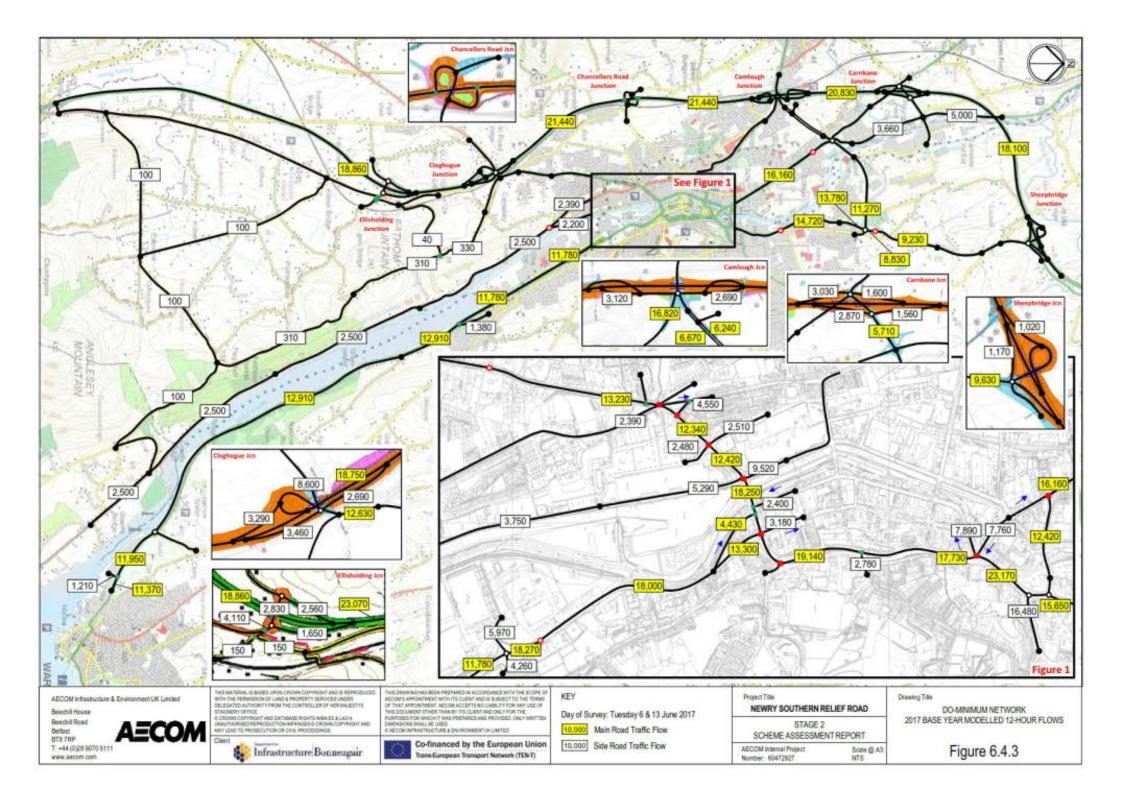


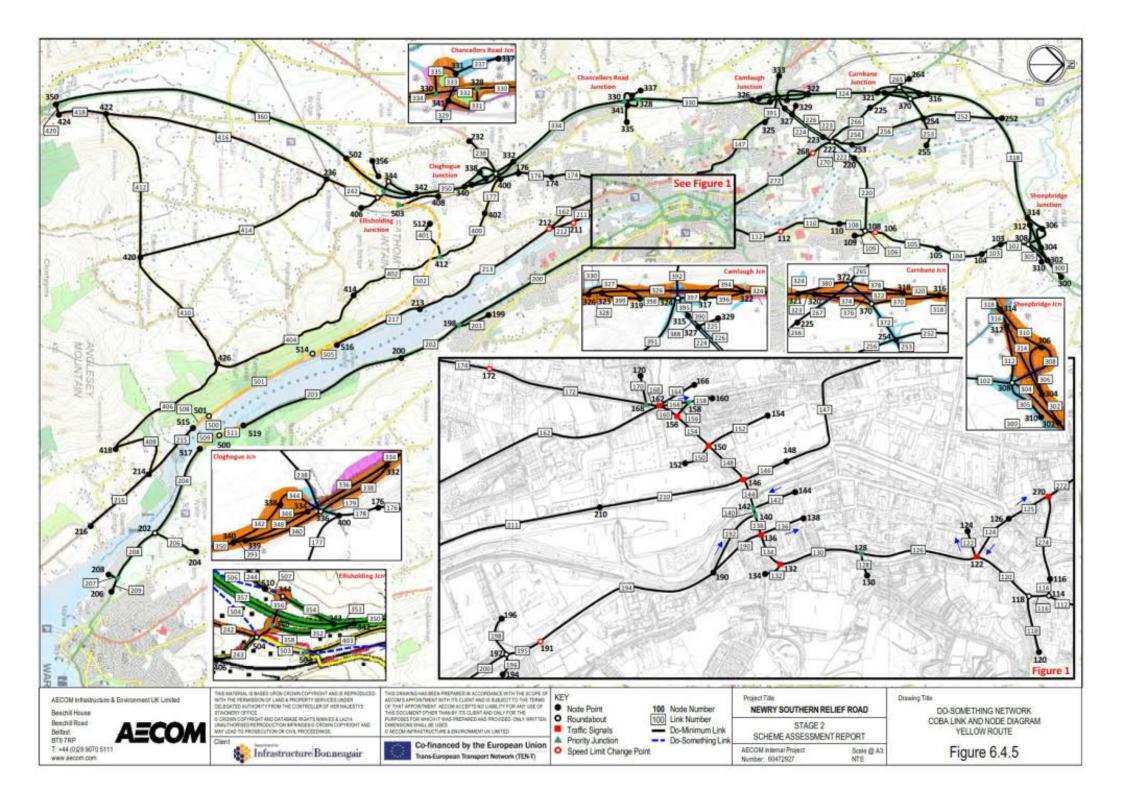


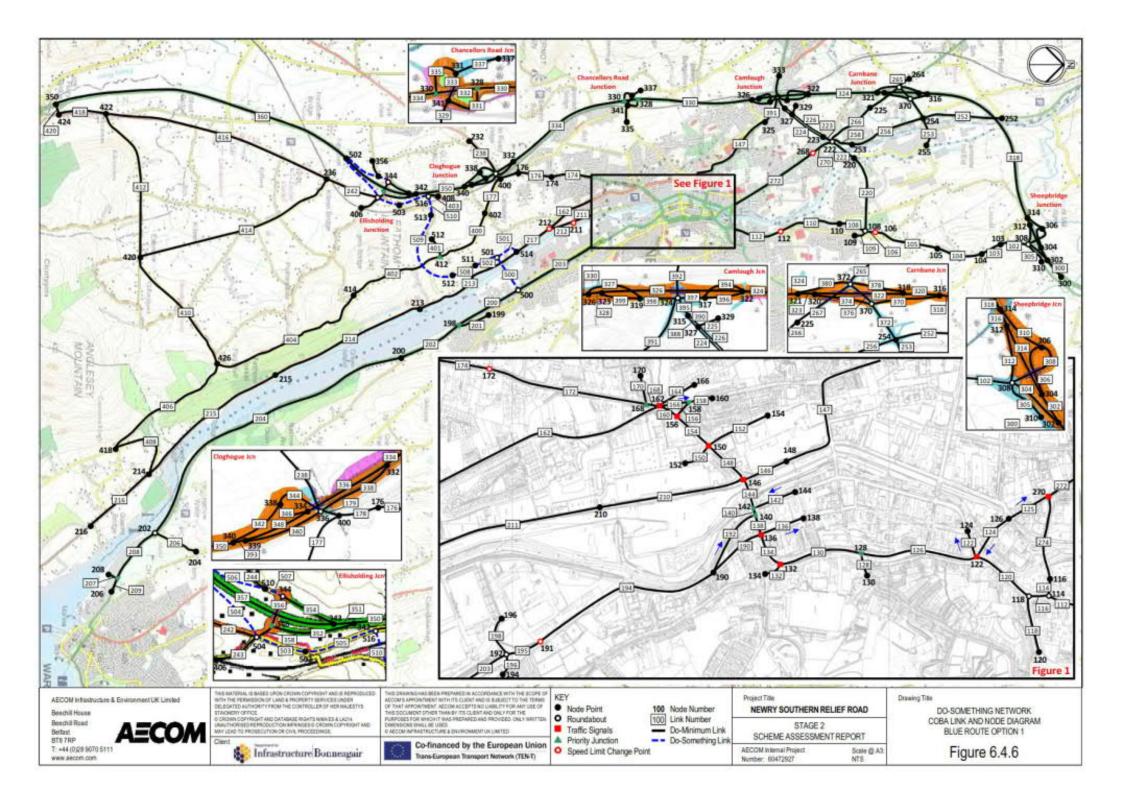


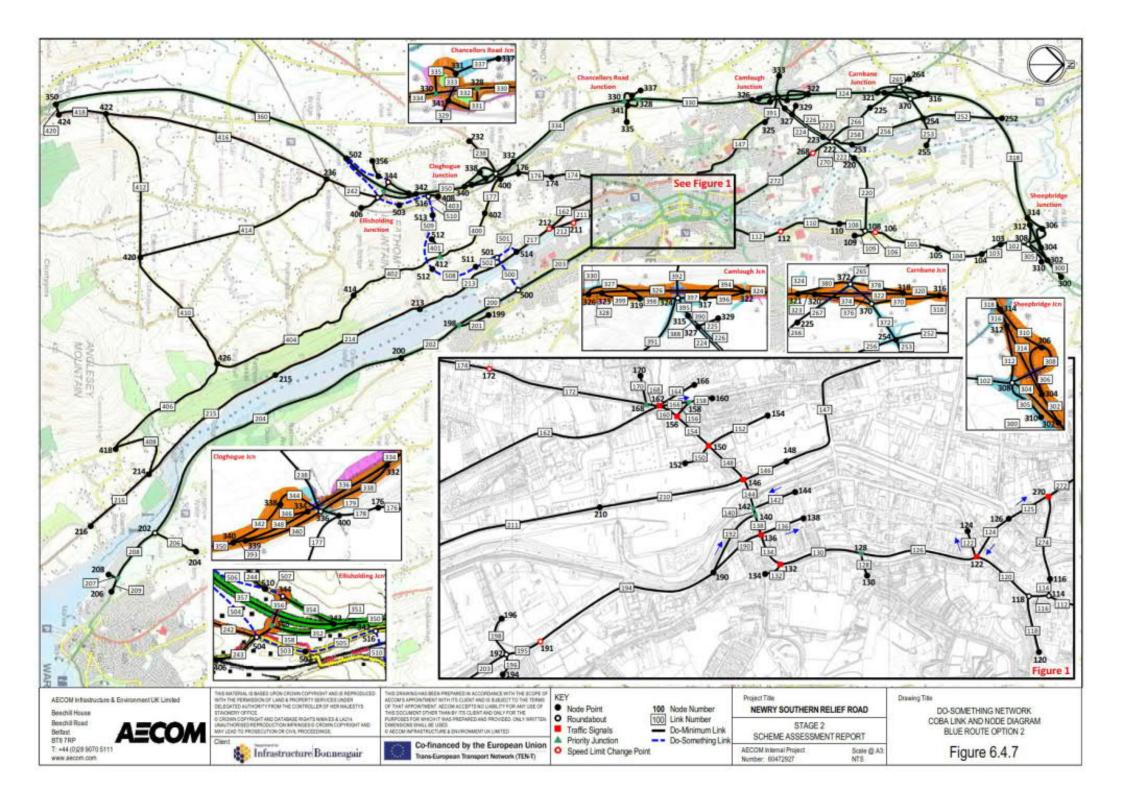


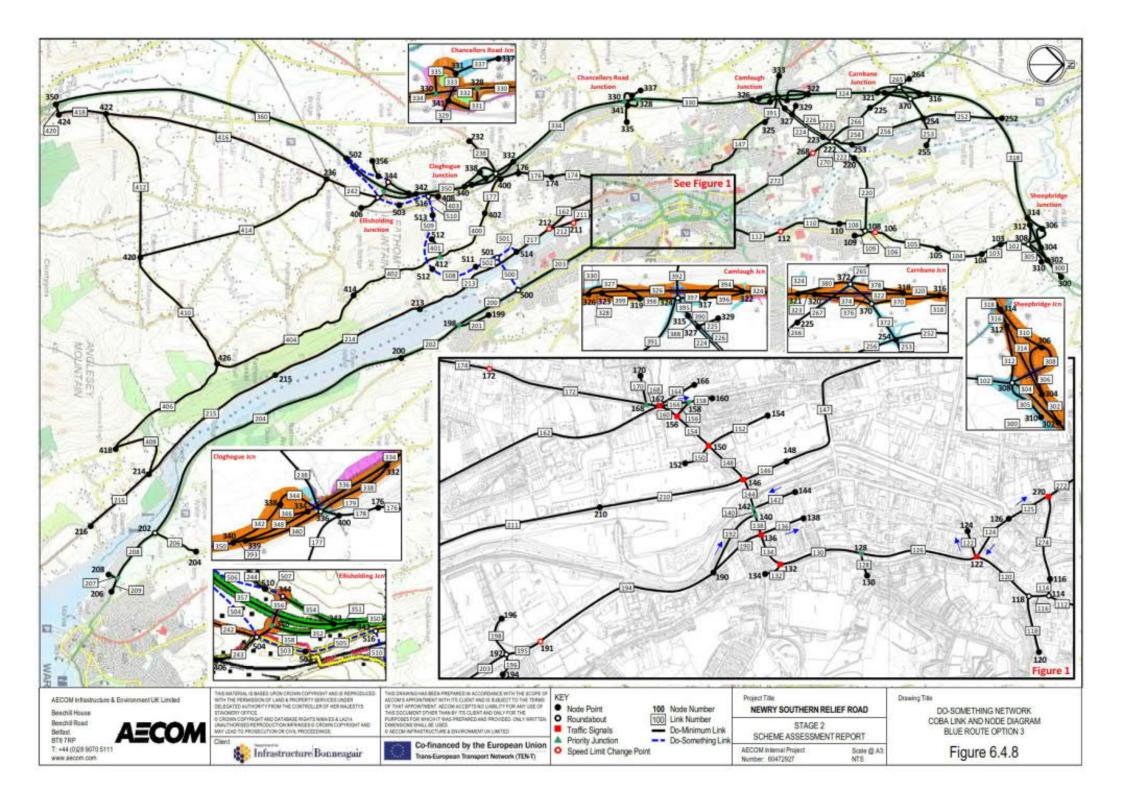


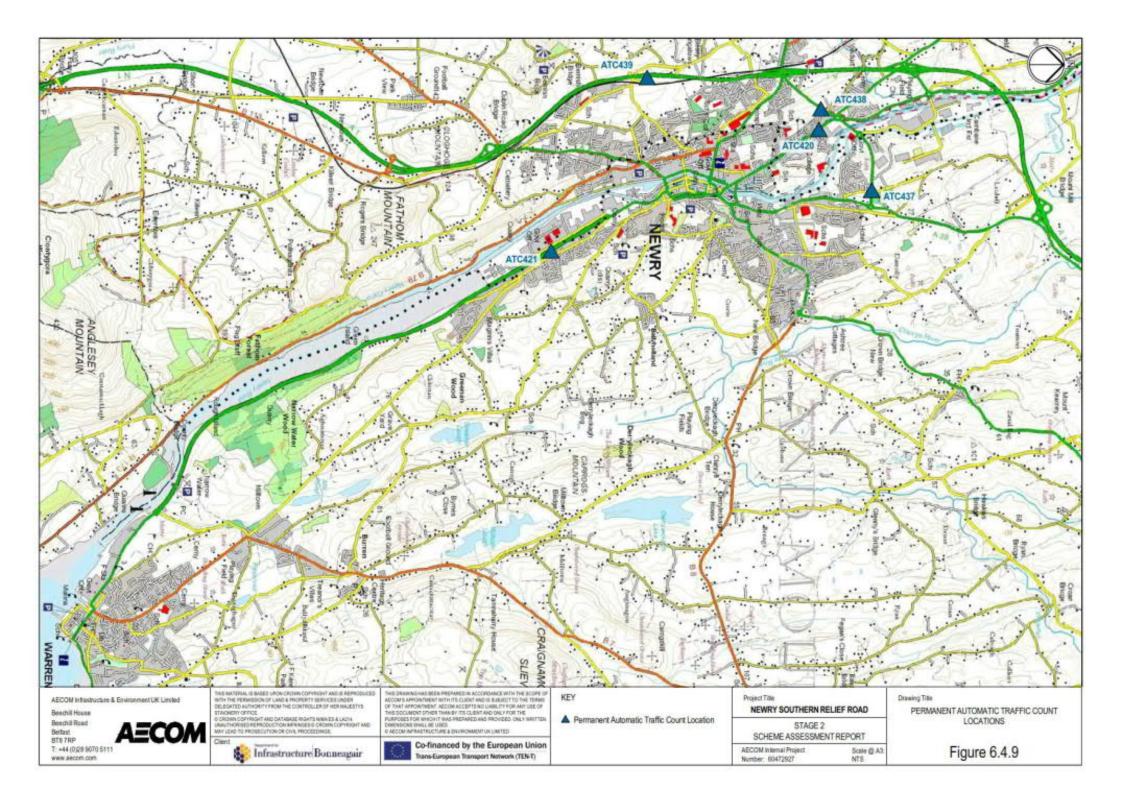


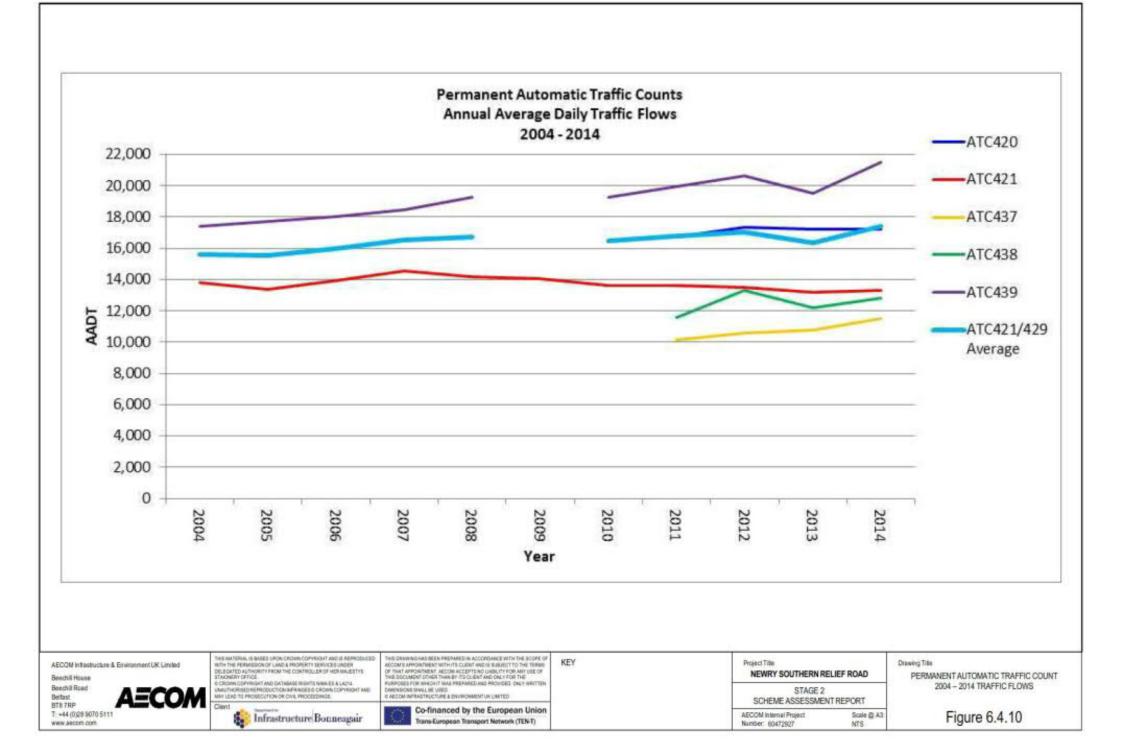


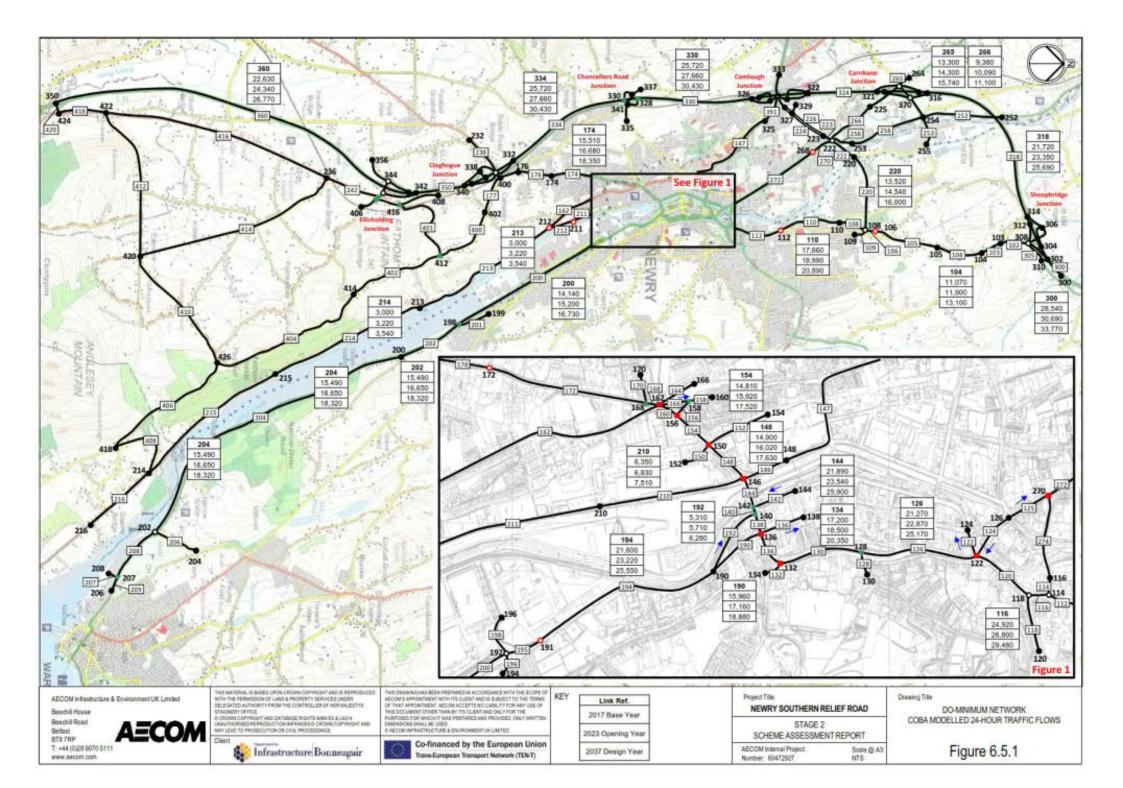


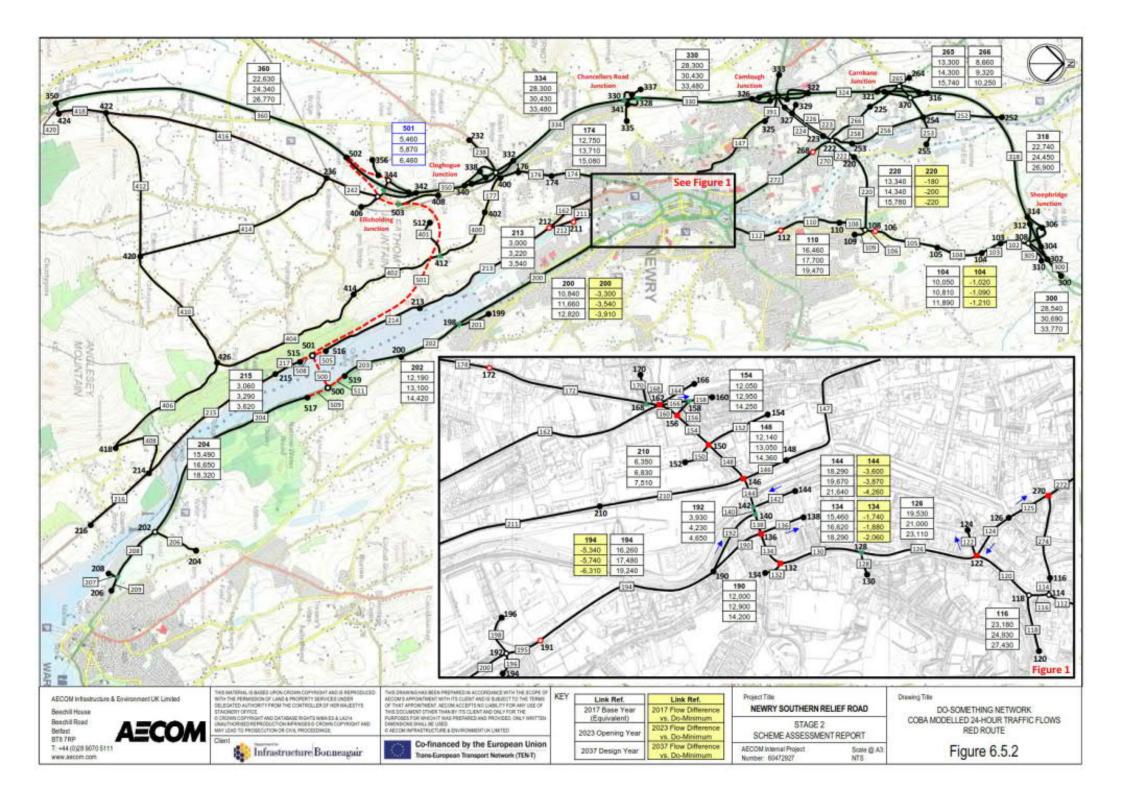


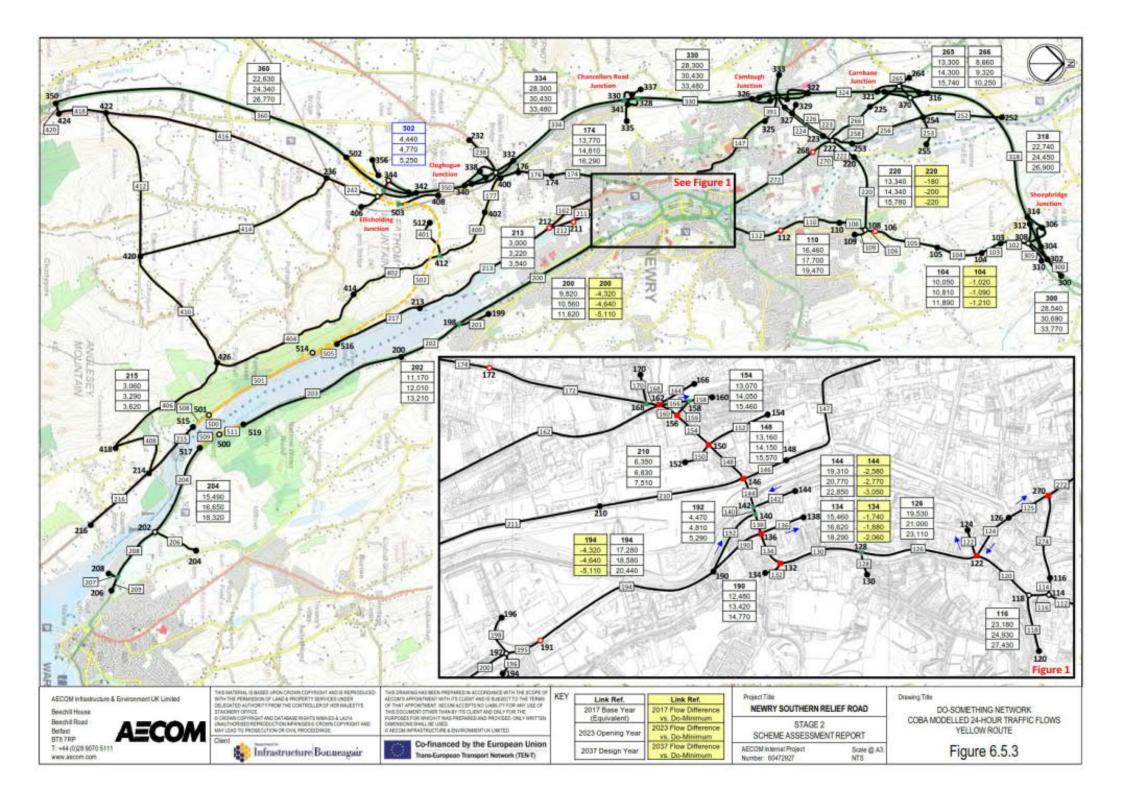


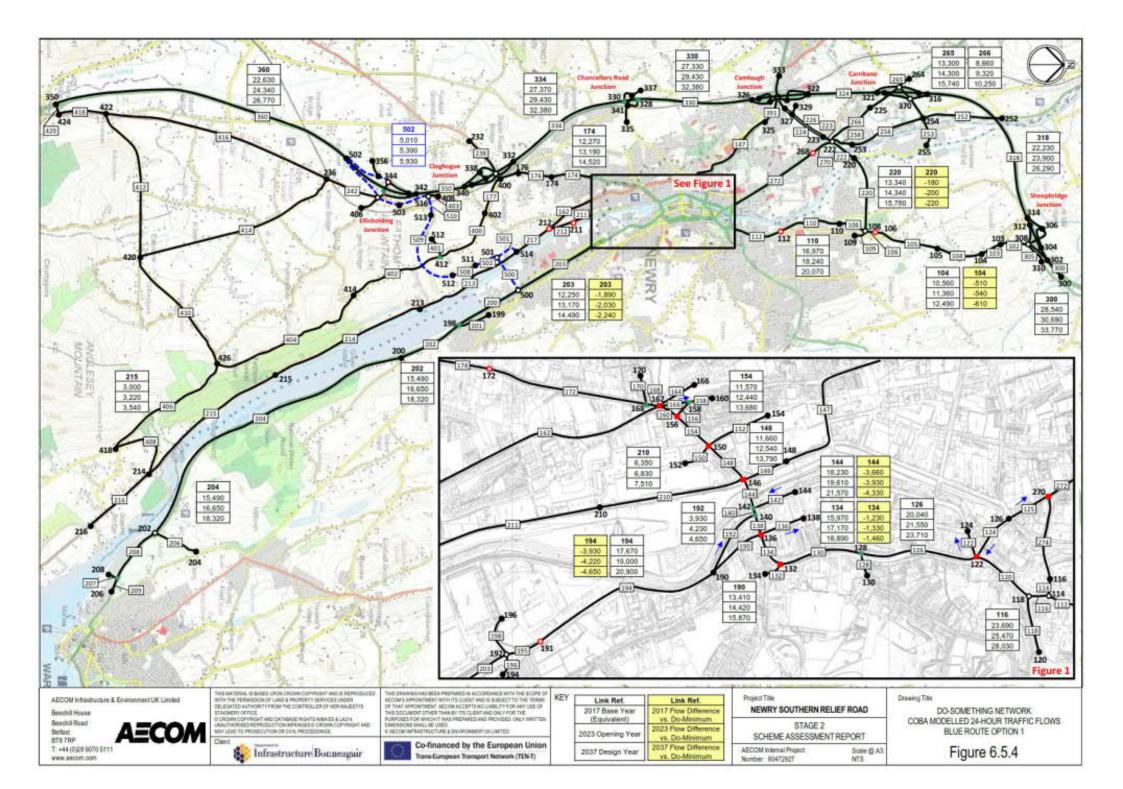


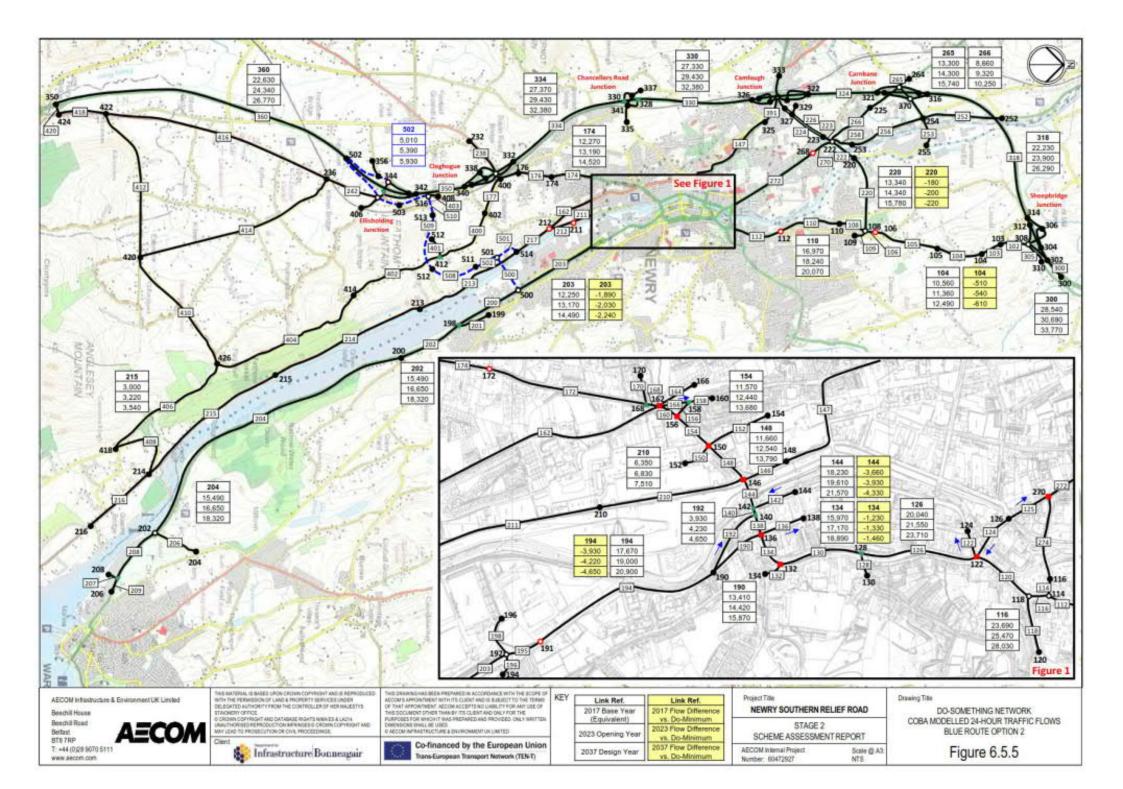


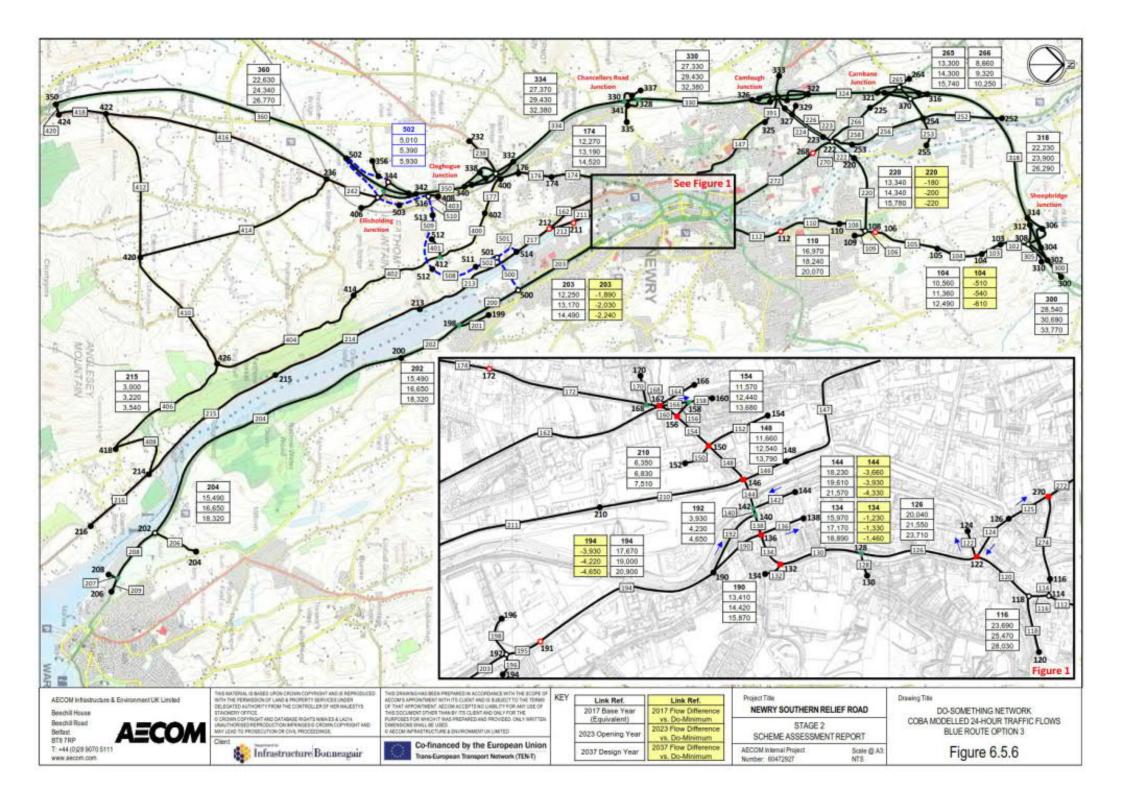


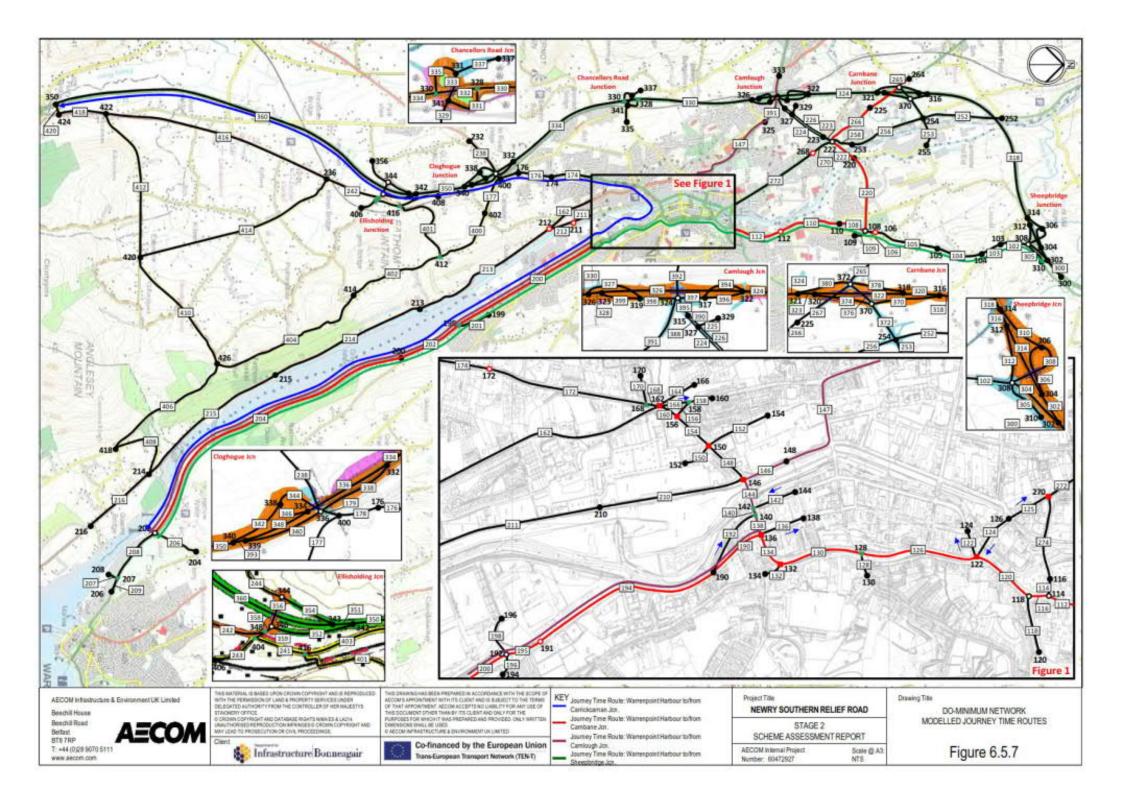


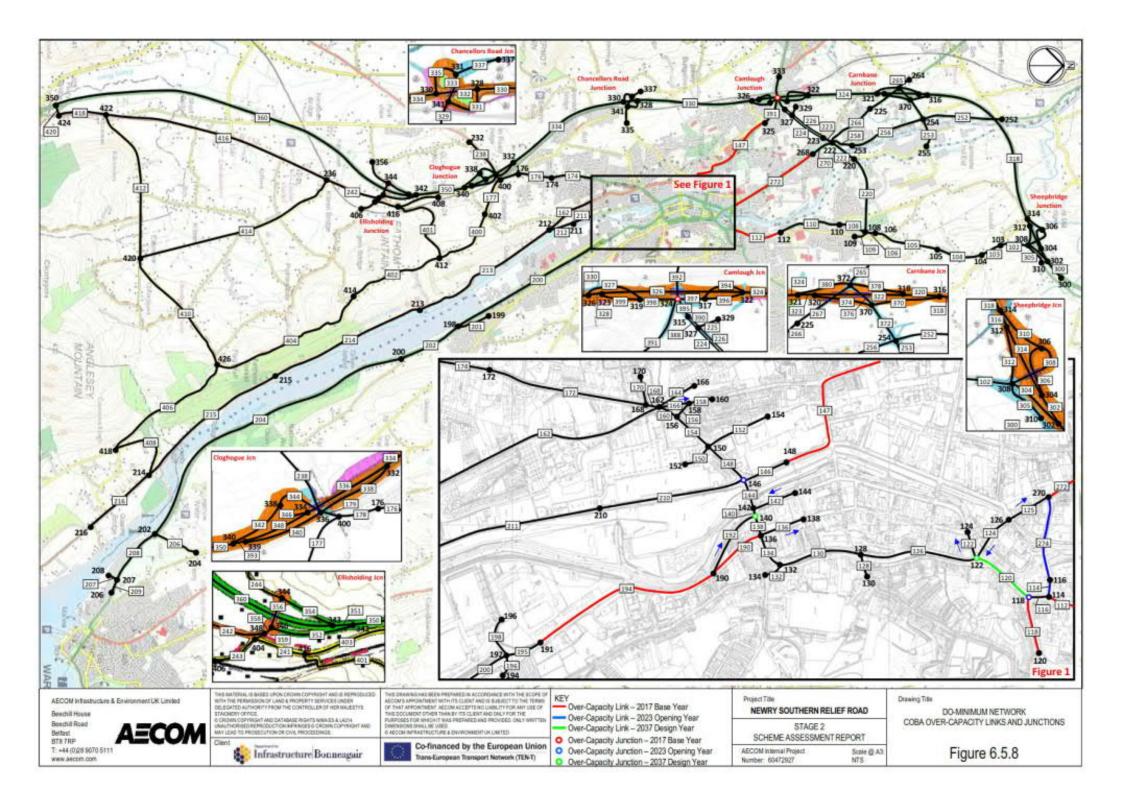


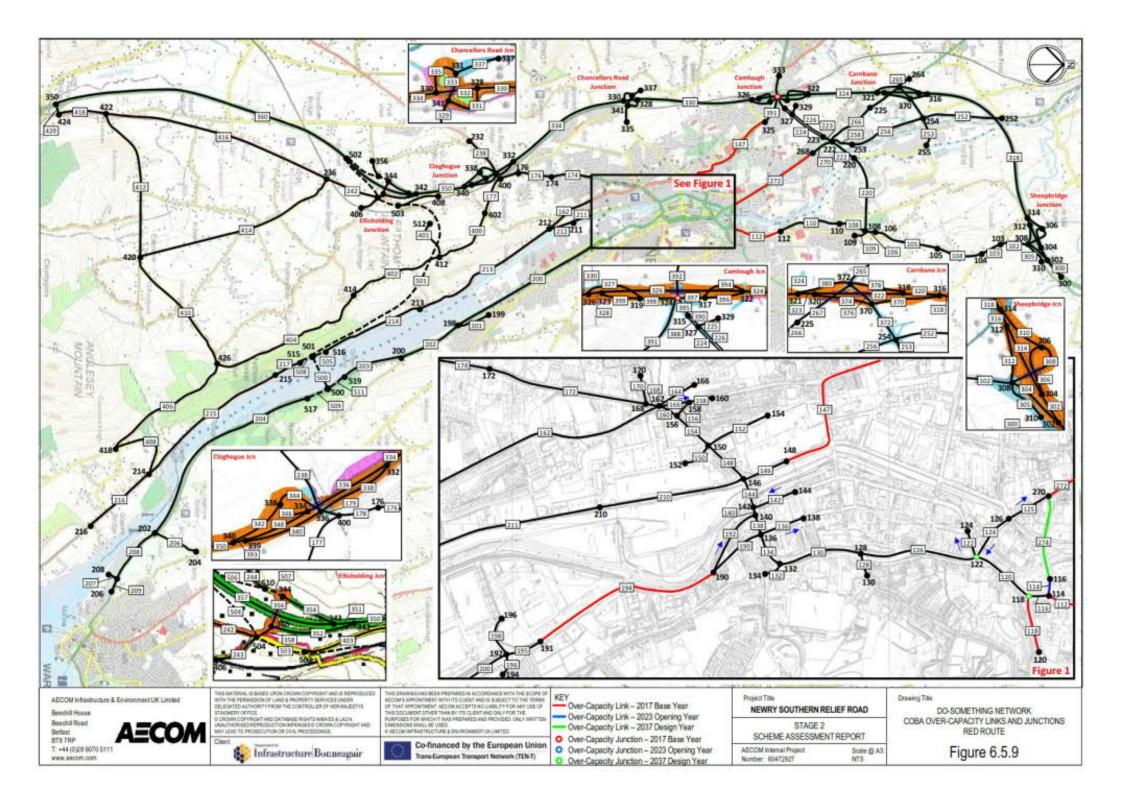


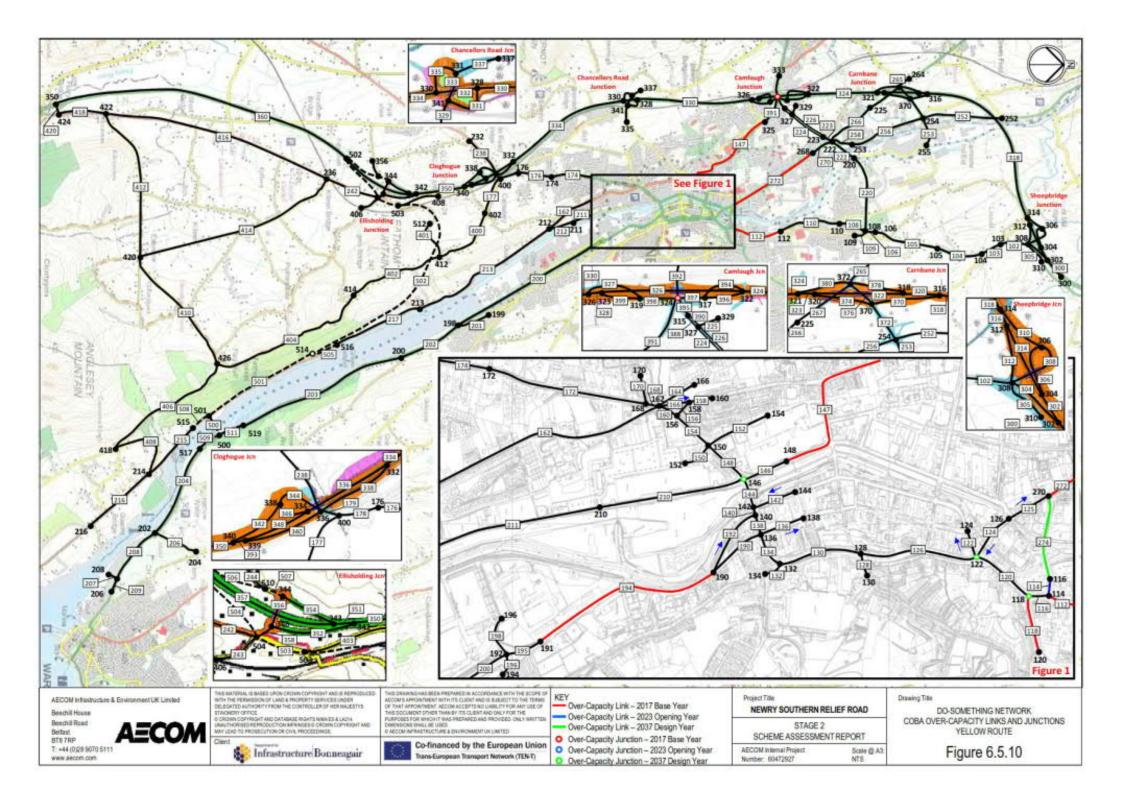


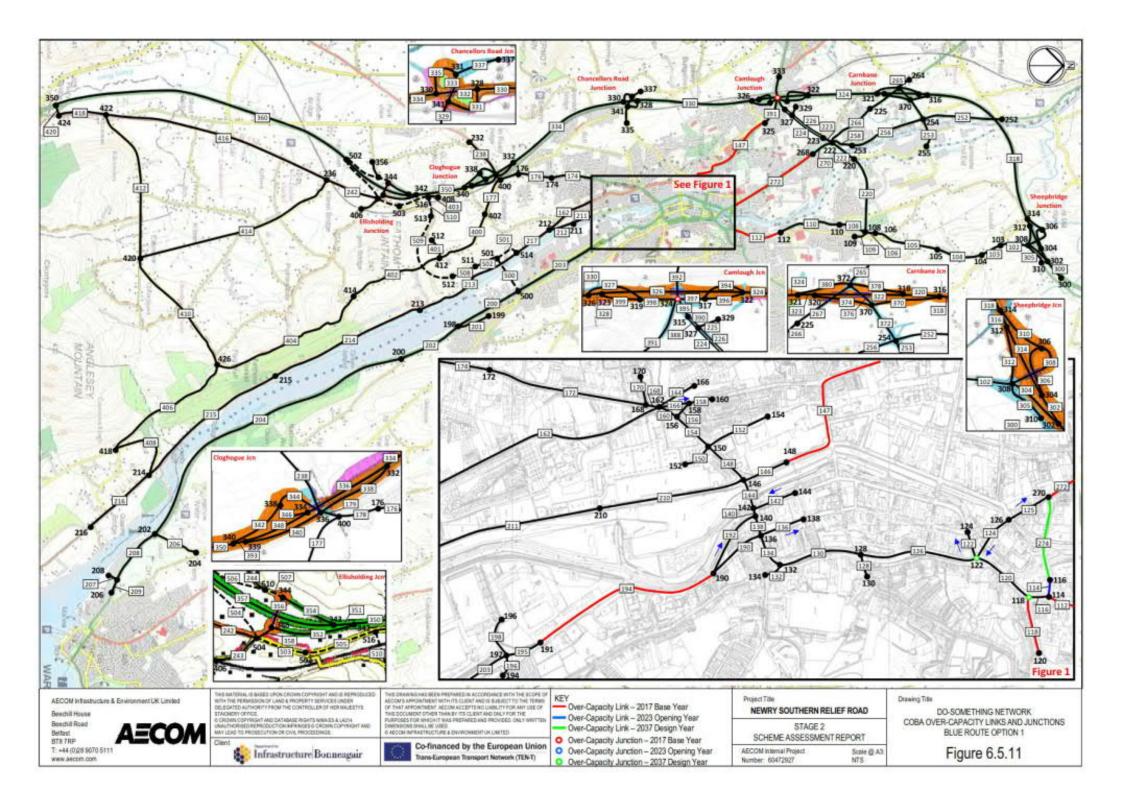


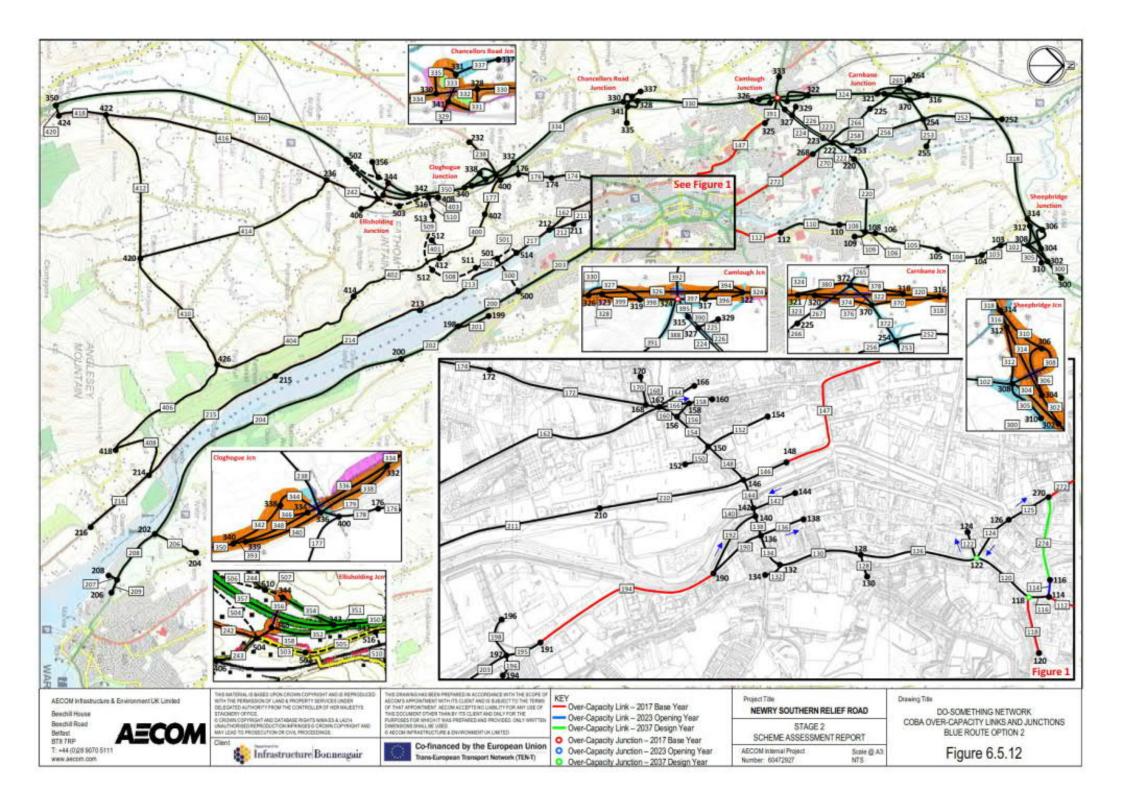


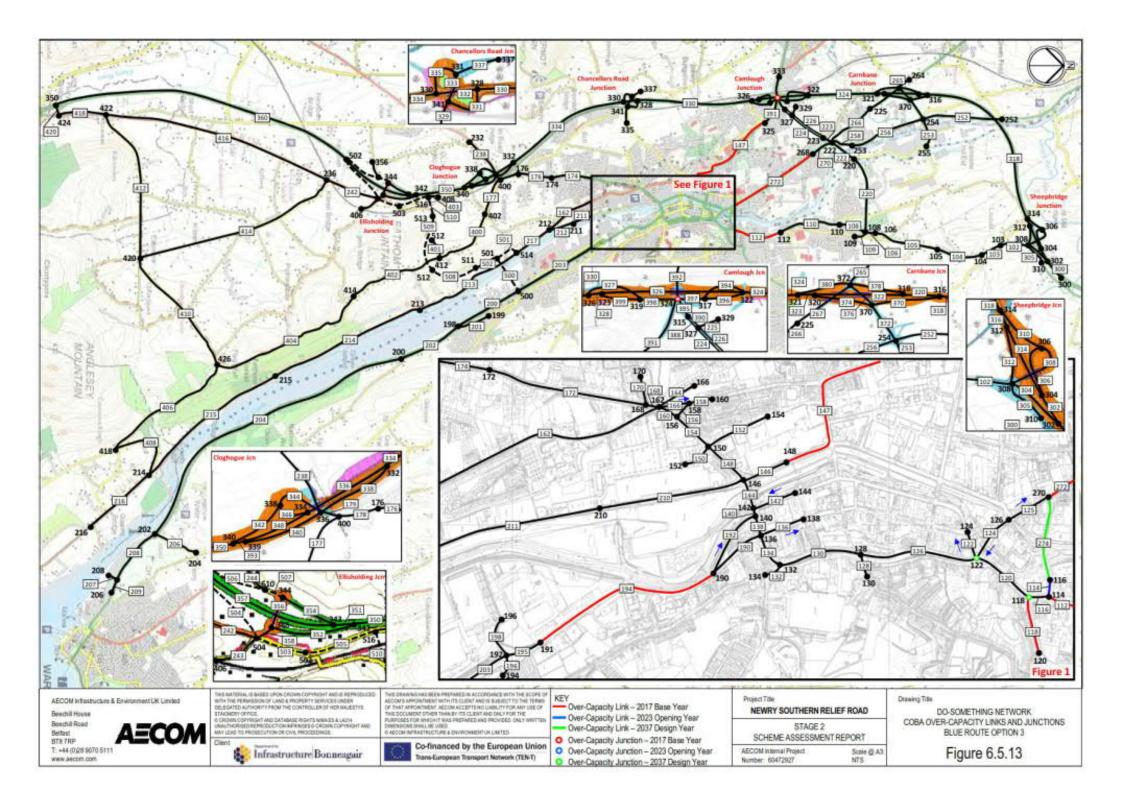












Project number: 60472927

Appendix B Annex A

Bac	kground pollutant concentra	tion in the vici	nity of the re	ceptor locatio	ons for Base	Year 2017
Receptor Number and Name		Background Air Quality Irish Grid Reference		NO _x µg m ⁻³ annual mean	NO2 µg m ⁻³ annual mean	PM10 µg m annual mean
1		308500	325500	9.28	7.15	9.85
2		308500	323500	6.63	5.19	8.46
3		309500	324500	7.50	5.83	9.07
4		309500	323500	6.49	5.08	8.44
5		309500	322500	5.68	4.47	8.00
6		309500	322500	5.68	4.47	8.00
7		309500	322500	5.68	4.47	8.00
8		308500	308500	5.78	4.54	8.00
9		308500	322500	5.78	4.54	8.00
10		308500	322500	5.78	4.54	8.00
Backg	round pollutant concentration	the second s	A STATE OF A	and the second se	and the second se	
Receptor Number and Name		Background Air Quality Irish Grid Reference		NO _x µg m ⁻³ annual	NO2 µg m ⁻³ annual	PM10 µg m annual
1		308500	325500	6.94	5.41	9.54
2		308500	323500	5.05	3.98	8.19
3		309500	324500	5.70	4.48	8.80
4		309500	323500	4.95	3.91	8.17
5		309500	322500	4.36	3.46	7.75
6		309500	322500	4.36	3.46	7.75
7		309500	322500	4.36	3.46	7.75
8		308500	308500	4.45	3.53	7.75
9		308500	322500	4.45	3.53	7.75
10		308500	322500	4.45	3.53	7.75
Back	ground pollutant concentrat	ten in the visio	the of the sec		na faa Daalaa	Ver- 2020
DOLK	ground pollutant concentrat			NOx µg m ⁻³	NO ₂ µg m ⁻³	
Receptor Number and Name		Background Air Quality Irish Grid Reference		annual	annual	PM10 µg m annual
1		308500	325500	5.73	4.50	9.42
2		308500	323500	4.19	3.32	8.07
3		308500	323500	4.19	3.75	8.69
4		309500	323500	4.11	3.26	8.05
_		309500	323500	3.60	2.87	7.63
- 14		309500	322500	3.60	2.87	7.63
5		309500	322500	3.60	2.87	7.63
6		308500	308500	3.71	2.95	7.63
6 7			000000			
6 7 8			322500	3./1	2.95	/ 63
6 7		308500 308500	322500 322500	3.71 3.71	2.95	7.63

Grid References only represent the centre point from where background air quality was estimated, they do not represent the actual receptor locations, these can be seen in this appendix for receptor details. Background Air Quality data is derived from figures produced by NETCEN, on behalf of Defra. In accordance with DMRB, 'while the mapped background concentrations may be directly

appropriate for most urban situations, there are few measurements available for rural locations. Rural background concentrations allocated to individual grid squares containing road links indicates that they may be unduly influenced by the road. It is then inappropriate to add a second contribution from the road. Where this issue is considered significant, it is recommended that concentrations are used derived from the average background concentration up to four grid squares away from either side of the road where there are no other significant sources of pollution'.

Following this advice, averages for air quality data were calculated for each of the receptors. Data was taken from the closest air quality receptor location, plus the eight closest surrounding points and averaged. Baseline and assumed year of opening data was downloaded from DEFRA website for pollutants NO2, NOx and PM10.

Traffic data and Link information for Local Air Quality Assessment										
	Re	ceptor Num	ber 1 at							
	Distance from link centre to receptor (m)	Traffic flow & speed		Traffic composition						
Link Number		AADT	Annual average speed (km/h)	Road type (A,B,C,D)	Total % LDV	Total % HDV				
		B	ase Year 20	17						
192	51.3	5311.05	34.57	D	94.5%	5.5%				
138	58.8	19427.43	22.23	D	94.5%	5.5%				
190	8.4	15961.90	23.42	D	94.5%	5.5%				
136	69.2	3812.29	48.00	D	94.5%	5.5%				
		202	3 Do-Minin	num						
192	51.3	5710.60	34.19	D	94.5%	5.5%				
138	58.8	20888.99	21.78	D	94.5%	5.5%				
190	8.4	17162.77	22.29	D	94.5%	5.5%				
136	69.2	4099.09	48.00	D	94.5%	5.5%				
	1.1 1.1	2023 Do	-Somethin	g Blue 1						
192	51.3	4226.83	35.57	D	94.5%	5.5%				
138	58.8	18437.53	22.54	D	94.5%	5.5%				
190	8.4	14421.01	24.84	D	94.5%	5.5%				
136	69.2	4099.09	48.00	D	94.5%	5.5%				
		2023 Do	o-Somethin	g Blue 2						
192	51.3	4226.83	35.57	D	94.5%	5.5%				
138	58.8	18437.53	22.54	D	94.5%	5.5%				
190	8.4	14421.01	24.84	D	94.5%	5.5%				
136	69.2	4099.09	48.00	D	94.5%	5.5%				
		2023 Do	o-Somethin	g Blue 3						
192	51.3	4226.83	35.57	D	94.5%	5.5%				
138	58.8	18437.53	22.54	D	94.5%	5.5%				
190	8.4	14421.01	24.84	D	94.5%	5.5%				
136	69.2	4099.09	48.00	D	94.5%	5.5%				
	24	2023 Do	-Something	g Yellow						
192	51.3	4807.43	35.03	D	94.5%	5.5%				
138	58.8	19018.14	22.36	D	94.5%	5.5%				
190	8.4	13421.07	25.77	D	94.5%	5.5%				
136	69.2	4099.09	48.00	D	94.5%	5.5%				
			o-Somethi	ng Red						
192	51.3	4226.83	35.57	D	94.5%	5.5%				
138	58.8	18502.04	22.52	D	94.5%	5.5%				
190	8.4	12904.98	26.25	D	94.5%	5.5%				
136	69.2	4099.09	48.00	D	94.5%	5.5%				

	No.	eceptor Nun	v & speed	Teal	fic composi	tion
	Distance from link	Trainic nov	Jan Stan were were	Tra	ne composi	uon
Link Number	centre to receptor (m)	AADT	Annual average speed (km/h)	Road type (A,B,C,D)	Total % LDV	Total % HDV
		B	ase Year 20	17		
177	15.4	399.59	63.71	D	94.5%	5.5%
340	118	4155.48	74.73	D	94.5%	5.5%
348	153	19578.63	104.78	D	94.5%	5.5%
179	141.5	15149.56	48.23	D	94.5%	5.5%
346	181.4	2914.72	45.00	D	94.5%	5.5%
		202	3 Do-Minin	num		
177	15.4	429.65	63.72	D	94.5%	5.5%
340	118	4468.10	74.45	D	94.5%	5.5%
348	153	21051.55	104.69	D	94.5%	5.5%
179	141.5	16289.28	47.22	D	94.5%	5.5%
346	181.4	3133.99	45.00	D	94.5%	5.5%
			-Somethin	g Blue 1	0	65
177	15.4	429.65	63.72	D	94.5%	5.5%
340	118	2726.28	76.13	D	94.5%	5.5%
348	153	22825.63	104.53	D	94.5%	5.5%
179	141.5	12805.63	50.31	D	94.5%	5.5%
346	181.4	3133.99	45.00	D	94.5%	5.5%
		2023 Do	o-Somethin	g Blue 2		
177	15.4	429.65	63.72	D	94.5%	5.5%
340	118	2726.28	76.13	D	94.5%	5.5%
348	153	22825.63	104.53	D	94.5%	5.5%
179	141.5	12805.63	50.31	D	94.5%	5.5%
346	181.4	3133.99	45.00	D	94.5%	5.5%
	20 20	2023 Do	-Somethin	g Blue 3		
177	15.4	429.65	63.72	D	94.5%	5.5%
340	118	2726.28	76.13	D	94.5%	5.5%
348	153	22825.63	104.53	D	94.5%	5.5%
179	141.5	12805.63	50.31	D	94.5%	5.5%
346	181.4	3133.99	45.00	D	94.5%	5.5%
			-Somethin	g Yellow		
177	15.4	429.65	63.72	D	94.5%	5.5%
340	118	3564.93	75.32	D	94.5%	5.5%
348	153	23825.57	104.44	D	94.5%	5.5%
179	141.5	14418.43	48.88	D	94.5%	5.5%
346	181.4	3133.99	45.00	D	94.5%	5.5%
			o-Somethi	ng Red		
177	15.4	429.65	63.72	D	94.5%	5.5%
340	118	2984.32	75.88	D	94.5%	5.5%
348	153	23825.57	104.44	D	94.5%	5.5%
179	141.5	13321.73	49.85	D	94.5%	5.5%
346	181.4	3133.99	45.00	D	94.5%	5.5%

	Recep	tor Number	3 at			
	Distance	Traffic flow	w & speed	Tra	ffic composi	tion
Link Number	from link centre to receptor (m)	AADT	Annual average speed (km/h)	Road type (A,B,C,D)	Total % LDV	Total % HDV
		B	ase Year 20	17		
200	39.4	14140.39	98.97	D	94.5%	5.5%
		202	3 Do-Minin	num	2	50
200	39.4	15204.19	98.92	D	94.5%	5.5%
		2023 Do	-Somethin	g Blue 1		
200&203	27.4	14186.19	99.10	D	94.5%	5.5%
500	79.9	5257.73	88.14	D	94.5%	5.5%
		2023 Do	o-Somethin	g Blue 2		0
200&203	27.4	14186.19	99.10	D	94.5%	5.5%
500	79.9	5257.73	88.14	D	94.5%	5.5%
		2023 Do	-Somethin	g Blue 3		
200&203	27.4	14186.19	99.10	D	94.5%	5.5%
500	79.9	5257.73	88.14	D	94.5%	5.5%
		2023 Do	-Somethin	g Yellow		
200	39.4	10559.32	99.33	D	94.5%	5.5%
		2023 0	o-Somethi	ng Red		
200	39.4	11656.03	99.23	D	94.5%	5.5%
		5		57		
	R	Receptor Nur	mber 4 at			
	Distance	Traffic flow	w & speed	Trai	ffic composi	tion
Link Number	from link centre to receptor (m)	AADT	Annual average speed (km/h)	Road type (A,B,C,D)	Total % LDV	Total % HDV
		B	ase Year 20	17	9 12	
213	86.5	2996.31	65.09	D	94.5%	5.5%
		202	3 Do-Minin	num		
213	86.5	3221.73	64.99	D	94.5%	5.5%
		2023 Do	-Somethin	g Blue 1		
213	86.5	3221.73	64.99	D	94.5%	5.5%
508	119	5386.75	93.20	D	94.5%	5.5%
		2023 Do	-Somethin	g Blue 2		
213	86.5	3221.73	64.99	D	94.5%	5.5%
508	110	5386.75	87.39	D	94.5%	5.5%
		2023 D	-Somethin	g Blue 3		
213	86.5	3221.73	64.99	D	94.5%	5.5%
508	110	5386.75	86.91	D	94.5%	5.5%
			-Something	g Yellow		
	86.5	3221.73	64.99	D	94.5%	5.5%
213	00.0			A DECK OF A		CONTRACTOR OF
213	00,5	and the second second second	o-Somethi	ng Red		
213 213	86.5	and the second second second	o-Somethi 64.99	ng Red	94.5%	5.5%

	Re	ceptor Nun	nber 5 at			
	Distance	Traffic flo	w & speed	Traf	fic composit	ion
Link Number	from link centre to receptor (m)	AADT	Annual average speed (km/h)	Road type (A,B,C,D)	Total % LDV	Total % HDV
		В	ase Year 20	17		
402	14.5	369.59	64.45	D	94.5%	5.5%
401	78.5	44.40	45.00	D	94.5%	5.5%
		203	23 Do-Minin	num		
402	14.5	397.39	64.44	D	94.5%	5.5%
401	78.5	47.74	45.00	D	94.5%	5.5%
		2023 D	o-Somethin	g Blue 1		
402	14.5	397.39	64.44	D	94.5%	5.5%
401	78.5	47.74	53.01	D	94.5%	5.5%
509	185.1	5386.75	86.01	D	94.5%	5.5%
	3	2023 D	o-Somethin	g Blue 2		
402	14.5	397.39	64.44	D	94.5%	5.5%
401	78.5	47.74	53.01	D	94.5%	5.5%
508/509	90.3	5386.75	87.39	D	94.5%	5.5%
		2023 D	o-Somethin	g Blue 3		
402	14.5	397.39	64.44	D	94.5%	5.5%
401	78.5	47.74	53.01	D	94.5%	5.5%
508/509	90.3	5386.75	87.53	D	94.5%	5.5%
		2023 D	-Somethin	g Yellow		
402	14.5	397.39	64.44	D	94.5%	5.5%
401	78.5	47.74	52.13	D	94.5%	5.5%
502	63.3	4773.89	90.82	D	94.5%	5.5%
		2023 1	Do-Somethi	ng Red		
402	14.5	397.39	64.44	D	94.5%	5.5%
401	78.5	47.74	53.01	D	94.5%	5.5%
501	63.3	5870.59	90.85	D	94.5%	5.5%

	Re	ceptor Num	ber 6 at		_	
	Distance	Traffic flo	w & speed	Tra	ffic composi	tion
Link Number	from link centre to receptor (m)	AADT	Annual average speed (km/h)	Road type (A,B,C,D)	Total % LDV	Total % HDV
		В	ase Year 20	17		
402	14.5	369.59	64.45	D	94.5%	5.5%
			23 Do-Minim	r		
402	14.5	397.39	64.44	D	94.5%	5.5%
			o-Somethin	g Blue 1		
402	14.5	397.39	64.44	D	94.5%	5.5%
509	45.7	5386.75	86.01	D	94.5%	5.5%
			o-Somethin	g Blue 2		
402	14.5	397.39	64.44	D	94.5%	5.5%
509	150.4	5386.75	87.27	D	94.5%	5.5%
10000			o-Somethin	g Blue 3		-
402	14.5	397.39	64.44	D	94.5%	5.5%
509	150.4	5386.75	87.53	D	94.5%	5.5%
			o-Something			
402	14.5	397.39	64.44	D	94.5%	5.5%
502	125.1	4773.89	90.82	D	94.5%	5.5%
			Do-Somethin	<u> </u>		
402	14.5	397.39	64.44	D	94.5%	5.5%
501	125.1	5870.59	90.85	D	94.5%	5.5%
					_	
		eceptor Nu				
	Distance from link	Traffic flo	w & speed	Tra	ffic composi	tion
Link Number	centre to receptor (m)	AADT	Annual average speed (km/h)	Road type (A,B,C,D)	Total % LDV	Total % HDV
		В	ase Year 20	17		
214	32.9	2996.31	65.09	D	94.5%	5.5%
		202	23 Do-Minim	num		
214	32.9	3221.73	64.99	D	94.5%	5.5%
			o-Somethin	g Blue 1		
214	32.9	3221.73	64.99	D	94.5%	5.5%
		-	o-Somethin	g Blue 2		_
214	32.9	3221.73	64.99	D	94.5%	5.5%
1.000			o-Somethin	1		
214	32.9	3221.73	64.99	D	94.5%	5.5%
			o-Something	1		
217	32.9	3286.24	64.96	D	94.5%	5.5%
502	79.8	4773.89	90.82	D	94.5%	5.5%
		2023 [Do-Somethin	ng Red		
						and the second se
214 501	32.9 81.8	3221.73 5870.59	64.99	D	94.5% 94.5%	5.5% 5.5%

	R	eceptor Num	nber 8 at			
	Distance	Traffic flow	v & speed	Trat	fic composit	tion
Link Number	from link centre to receptor (m)	AADT	Annual average speed (km/h)	Road type (A,B,C,D)	Total % LDV	Total % HDV
		Ba	ase Year 20	17		
403	30	221.99	80.44	D	94.5%	5.5%
352	60.5	1973.94	88.73	D	94.5%	5.5%
360	85.9	22632.54	102.81	D	94.5%	5.5%
354	106.7	3075.51	88.19	D	94.5%	5.5%
	-0- -17	202	3 Do-Minin	num		Cl
403	30	238.69	80.46	D	94.5%	5.5%
352	60.5	2122.44	88.63	D	94.5%	5.5%
360	85.9	24335.21	102.69	D	94.5%	5.5%
354	106.7	3306.89	88.01	D	94.5%	5.5%
		2023 Do	-Somethin	g Blue 1		
352	60.5	3025.61	87.76	D	94.5%	5.5%
357	85.9	20851.57	100.16	D	94.5%	5.5%
354	106.7	4177.80	87.17	D	94.5%	5.5%
505	31.5	5448.68	82.29	D	94.5%	5.5%
	3	2023 Do	-Somethin	g Blue 2	y	6
352	60.5	3025.61	87.76	D	94.5%	5.5%
357	85.9	20851.57	100.16	D	94.5%	5.5%
354	106.7	4177.80	87.17	D	94.5%	5.5%
505	47.8	5448.68	82.29	D	94.5%	5.5%
		2023 Do	-Somethin	g Blue 3		
352	60.5	3025.61	87.76	D	94.5%	5.5%
357	85.9	20851.57	100.16	D	94.5%	5.5%
354	106.7	4177.80	87.17	D	94.5%	5.5%
505	47.8	5448.68	82.29	D	94.5%	5.5%
		2023 Do	-Somethin	g Yellow		
403	30	319.98	80.42	D	94.5%	5.5%
352	60.5	3541.71	87.26	D	94.5%	5.5%
357	85.9	22464.37	100.01	D	94.5%	5.5%
354	106.7	4661.64	86.70	D	94.5%	5.5%
502	54.8	4773.89	90.82	D	94.5%	5.5%
		2023 0	o-Somethi	ng Red		
403	30	319.98	80.42	D	94.5%	5.5%
352	60.5	3541.71	87.26	D	94.5%	5.5%
357	85.9	21367.66	100.11	D	94.5%	5.5%
354	106.7	4661.64	86.70	D	94.5%	5.5%
501	54.8	5870.59	90.85	D	94.5%	5.5%

	R	eceptor Num	and the second		-	
	Distance	Traffic flow	v & speed	Trat	fic composi	tion
Link Number	from link centre to receptor (m)	AADT	Annual average speed (km/h)	Road type (A,B,C,D)	Total % LDV	Total % HDV
		Ba	ase Year 20	17		
360	130.5	22632.54	102.81	D	94.5%	5.5%
356&358	55.5	4158.48	60.13	D	94.5%	5.5%
241	24.3	177.59	82.00	D	94.5%	5.5%
401	183.5	44.40	45.00	D	94.5%	5.5%
352	78.2	1973.94	88.73	D	94.5%	5.5%
		202	3 Do-Minin	num		
360	130.5	24335.21	102.69	D	94.5%	5.5%
356&358	55.5	4471.33	60.01	D	94.5%	5.5%
241	24.3	190.96	82.02	D	94.5%	5.5%
401	183.5	47.74	45.00	D	94.5%	5.5%
352	78.2	2122.44	88.63	D	94.5%	5.5%
		2023 Do	-Somethin	g Blue 1		
357	130.5	20851.57	100.16	D	94.5%	5.5%
358	57.6	8796.86	45.00	D	94.5%	5.5%
503	24.3	5448.68	91.29	D	94.5%	5.5%
352	77.9	3025.61	87.76	D	94.5%	5.5%
504	105.3	1741.82	89.87	D	94.5%	5.5%
		2023 Do	-Somethin	g Blue 2		
357	130.5	20851.57	100.16	D	94.5%	5.5%
358	57.6	8796.86	45.00	D	94.5%	5.5%
503	24.3	5448.68	91.29	D	94.5%	5.5%
352	77.9	3025.61	87.76	D	94.5%	5.5%
504	105.3	1741.82	89.87	D	94.5%	5.5%
		2023 Do	-Somethin	g Blue 3		
357	130.5	20851.57	100.16	D	94.5%	5.5%
358	57.6	8796.86	45.00	D	94.5%	5.5%
503	24.3	5448.68	91.29	D	94.5%	5.5%
352	77.9	3025.61	87.76	D	94.5%	5.5%
504	105.3	1741.82	89.87	D	94.5%	5.5%
		1. 00 C 10 C	-Somethin	Yellow		
357	130.5	22464.37	100.01	D	94.5%	5.5%
358	57.6	9022.65	45	D	94.5%	5.5%
503	24.3	4835.82	91.59	D	94.5%	5.5%
352	77.9	3541.71	87.26	D	94.5%	5.5%
504	105.3	903.17	90.68	D	94.5%	5.5%
0.000		and the second second second	-Somethin	1.	1. 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 19 1	
357	130.5	21367.66	100.11	D	94.5%	5.5%
358	57.6	9538.74	45	D	94.5%	5.5%
503	24.3	5932.52	91.04	D	94.5%	5.5%
352	77.9	3541.71	87.26	D	94.5%	5.5%
504	105.3	1483.78	90.12	D	94.5%	5.5%

	Rece	eptor Numbe	er 10 at				
	Distance	Traffic flow	w & speed	Tra	ffic composi	tion	
Link from link Number receptor (m)		AADT	Annual average speed (km/h)	Road type (A,B,C,D)	Total % LDV	Total % HDV	
		Ba	ase Year 20	17			
244	37.5	697.18	73.95	D	94.5%	5.5%	
356	74.4	3391.10	60.13	D	94.5%	5.5%	
360	45.4	22632.54	102.81	D	94.5%	5.5%	
352	145	1973.94	88.73	D	94.5%	5.5%	
	-0- 	202	3 Do-Minin	num		d 1	
244	37.5	749.63	73.95	D	94.5%	5.5%	
356	74.4	3646.22	60.01	D	94.5%	5.5%	
360	45.4	24335.21	102.69	D	94.5%	5.5%	
352	145	2122.44	88.63	D	94.5%	5.5%	
		2023 Do	-Somethin	g Blue 1			
356	74.4	6258.95	83.87	D	94.5%	5.5%	
357	45.4	20851.57	100.16	D	94.5%	5.5%	
507	36.3	2491.45	93.29	D	94.5%	5.5%	
504	126.7	1741.82	89.87	D	94.5%	5.5%	
352	134.5	3025.61	87.76	D	94.5%	5.5%	
		123 A 127 (2010) / 14 / 1	-Somethin	g Blue 2			
356	74.4	6258.95	83.87	D	94.5%	5.5%	
357	45.4	20851.57	100.16	D	94.5%	5.5%	
507	36.3	2491.45	93.29	D	94.5%	5.5%	
504	126.7	1741.82	89.87	D	94.5%	5.5%	
352	134.5	3025.61	87.76	D	94.5%	5.5%	
		2023 Do	-Somethin	g Blue 3			
356	74.4	6258.95	83.87	D	94.5%	5.5%	
357	45.4	20851.57	100.16	D	94.5%	5.5%	
507	36.3	2491.45	93.29	D	94.5%	5.5%	
504	126.7	1741.82	89.87	D	94.5%	5.5%	
352	134.5	3025.61	87.76	D	94.5%	5.5%	
			-Somethin				
356	74.4	6484.75	83.76	D	94.5%	5.5%	
357	45.4	21367.66	100.11	D	94.5%	5.5%	
507	36.3	2233.41	93.41	D	94.5%	5.5%	
504	126.7	1483.78	90.12	D	94.5%	5.5%	
352	134.5	3541.71	87.26	D	94.5%	5.5%	
			o-Somethi			01010	
356	74.4	5968.65	84.01	D	94.5%	5.5%	
357	45.4	22464.37	100.01	D	94.5%	5.5%	
507	36.3	1717.31	93.66	D	94.5%	5.5%	
504	126.7	903.17	90.68	D	94.5%	5.5%	
352	134.5	3541.71	87.26	D	94.5%	5.5%	

Appendix B Annex B

OMRB:	Assessm	ent of	Loca	l Air	· Quality	2				OUTI	PUT SH	IDE1	
Current re	ceptor	1 .											
Receptor Na	me		(Bue 2)		Receptor nu	mber	20						
Assessment	year	2023			3.								
Results					<i></i>			Contrib	ution of e	each link	to annual	mean	151
		Annual mea	in-		For compariso	n with Air Qual	ity Standards	Link number C	O (ng/m ¹)	Benzene (µg/m²)	1,3-butadiene (µg/m²)	NOx (µg/m²)	PM ₁₀ (ag/a
Pollutant								1	0.00	0.00	0.00	0.32	0.03
Ponusant	Background	Road traffic						2	0.00	0.00	0.00	0.33	0.03
	concentration	component	Total	Units	Metric	Value	Units	3					
	S CONTRACTOR	12 h Colter Cole						4				2	1
co	0.00	0.00	0.00	mg/m ³	Annual mean*	0.00	mg/m ³	6			-	-	-
Benzene	0.00	0.00	0.00	and the state of the	Annual mean	0.00	µg/m²	7					1
1,3-butadiene	0.00	0.00	0.00	µg/m ³	Annual mean	0.00	HB/m3	8				3	16
NO,	0.0	0.7	0.7	µg/m ²		Not applicable		9					
NO ₂	0.0	0.4	0.4	µg/m ³	Annual mean*	0.4	µg/m ²	10					ê.)
PM ₁₀					Annual mean	8.2	µg/m ³	11					
	8.2	0.06	8.23	hðiu,	Days >50µg/m ¹	0	Days	12	2				8
		1					1997-1997 - 1997-1997-1997-1997-1997-199	13				2	

DIADD 4 CI INO PA

OUTDUT OUTFT

* See Footnote 32 in DMRB Volume 11 Chapter 3

14 15

All recepto	rs			Po	llutant conce	entrations a	t receptor		
	19 m.		co*	Benzene	1,3-butadiene	NO,	NO2*	PM	10
Receptor number	Name	Year	Annual mean mg/m ³	Annual mean µg/m ¹	Annual mean µg/m ³	Annual mean iigim ³	Annual mean	Annual mean ugim ¹	Days ≻50µg/m
71	(Basa)	2017	0.16	0.18	0.15	20.01	6.50	12.04	0.00
2	(Do Min)	2023	0.17	0.20	0.16	19.32	6.32	11.71	0.00
3	(Red)	2023	0.13	0.15	0.12	15.75	5,37	11.28	0.00
4	(Yiellow)	2023	0.14	0.15	0.12	16.41	5.55	11.36	0.00
5	(Bke Options 1-3)	2023	0.15	0.16	0.13	17.14	5.75	11,45	0.00
6	(Bane)	2017	0.01	0.01	0.01	1.46	0.74	8.60	0.00
7	(Do Min)	2023	0.01	0.01	0.01	1.43	0.72	8.33	0.00
	(Fied)	2023	0.01	0.01	0.01	1.33	0.68	8.32	0.00
9	(Yelicw)	2023	0.01	0.01	0.01	1.38	0.70	8.33	0.00
10	(Eiter 1-3)	2023	0.01	0.01	0.01	1.29	0.66	8.32	0.00
11	(Bane)	2017	0.02	0.02	0.02	5.76	2.38	9.68	0.00
12	(Do Min)	2023	0.02	0.02	0.02	5.78	2.37	9.42	0.00
13	(Red)	2023	0.02	0.02	0.01	4.48	1.91	9.28	0.00
14	(Yellow)	2023	0.01	0.01	0.01	4.06	1.78	9.24	0.00
15	(Blue Options1-3)	2023	0.03	0.03	0.03	8,04	3.11	9.66	0.00
16	(Base)	2017	0.00	0.00	0.00	0.32	.0.19	8.47	0.00
17	(Do Miri)	2023	0.00	0.00	0.00	0.32	0.19	8.20	0.00
18	(Red& Yellow)	2023	0.00	0.00	0.00	0.32	0.19	8.20	0.00
19	(Elue 1)	2023	0.00	0.00	0.00	0.60	0.34	8.22	0.00
20	(Blue 2)	2023	0.00	0.00	0.00	0.65	0.36	8.23	0

MRB:	Assessm	ent of	Loca	l Air			OUTI	PUT SH	EET				
urrent re	ceptor												
Receptor Na	me		(Bke)		Receptor n	umber	20						
Assessment	year	2023			с. С								
Results					18			Contri	bution of	ach link	to annual	mean	
	-	Annual mea	in -		For comparis	on with Air Qual	ity Standards	Link number	CO (ngim ¹)	Benzene (µg/m²)	1,3-butadiene (µg/m²)	NOx (µg/m²)	PM ₁₀ (µgim ¹)
Pollutant	Background concentration	Road traffic component	Total	Units	Metric	Value	Units	1 2 3 4	6.01	0.01	0.01	1.16	0.10
co	0.00	0.01	0.01	mg/m ³	Annual mean*	0.01	mg/m ³	6	1				
Benzene	0.00	0.01	0.01	µg/m ³	Annual mean	0.01	µg/m²	7	5 N				0
1,3-butadiene	0.00	0.01	0.01	µg/m ³	Annual mean	0.01	HB/m3	8				3	26
NO,	0.0	1.2	1.2	µg/m ²		Not applicable		9					
NO ₂	0.0	0.6			Annual mean*	0.6	µg/m ³	10				2	2)
PM ₁₀	7.8	0.10	7.85	µg/m ¹	Annual mean Days >50µg/m ¹	7.8	µg/m³ Days	11 12					
							12 and a 12 and	13				-	

* See Footnote 32 in DMRB Volume 11 Chapter 3

14 15

All receptor	s			Po	llutant conce	entrations a	t receptor		
	1910		co*	Benzene	1,3-butadiene	NO,	NO2*	PM	10
teceptor number	Name	Year	Annual mean mg/m ³	Annual mean µg/m ¹	Annual mean µg/m ³	Annual mean ug/m ³	Annual mean	Annual mean ugim ¹	Days ≻50µg/m
71	(Blue 3)	2023	0.00	0.00	0.00	0.65	0.36	8.23	0.00
2	(Base)	2017	0.00	0.00	0.00	0.24	0.15	8.02	0.00
3	(Do Min)	2023	0.00	0.00	0.00	0.24	0.15	7,77	0.00
4	(Flord)	2023	0.01	0.01	0.01	1.41	0.71	7.88	0.00
5	(Yellow)	2023	0.00	0.01	0.00	1.19	0.62	7.86	0.00
6	(Elian 1)	2023	0.00	0.00	0.00	0.33	0.20	7.78	0.00
7	(Bkar 2)	2023	0.00	0.00	0.00	0.78	0.43	7.82	0.00
	(Dias 3)	2023	0.00	0.00	0.00	0.79	0.43	7.82	0.00
9	(Base)	2017	0.00	0.00	0.00	0,10	0.07	8.01	0.00
10	(Do Miri)	2023	0.00	0.00	0.00	0.10	0.07	7.76	0.00
11	(Ford)	2023	0.00	0.00	0.00	0.36	0.21	7.78	0.00
12	(Yellow)	2023	0.00	0.00	0.00	0.31	0.19	7.78	0.00
13	(Bhas 1)	2023	0.01	0.01	0.01	1.67	0.83	7.90	0.00
14	(Base 2)	2023	0.00	0.00	0.00	0.24	0.15	7.77	0.00
15	(Blue 3)	2023	0.00	0.00	0.00	0.24	0.15	7.77	0.00
16	(Base)	2017	0.01	0.01	0.00	1.16	0.60	8.09	0.00
17	(Do Miri)	2023	0.01	0.01	0.01	1.16	0.60	7.85	0.00
18	(Red)	2023	0.01	0.01	0.01	1.91	0.93	7.92	0.00
19	(Yellow)	2023	0.01	0.01	0.01	1.82	0.89	7,91	0.00
20	(Blue 1-3)	2023	0.01	0.01	0.01	1.10	0.60	7.85	0.00

Receptor Nar	ne		(Blue 1-3)		Receptor nu	mber	.11						
Assessment	year	2023			0								
Results					a.			Contrib	ution of e	each link	to annual	mean	et:
		Annual mea	in -		For compariso	n with Air Qual	ity Standards	Link number C	O (ng/m ¹)	Benzene (µg/m²)	1,3-butadiene (µg/m²)	NOx (µg/m²)	PM ₁₀ (agins
Pollutant					1			1	0.00	0.00	0.00	0.73	0.08
Ponusant	Background	Read traffic						2	0.01	0.01	0.01	1.76	0.17
	concentration	component	Total	Units	Metric	Value	Units	3	0.01	0.0t	0.01	2.85	0.28
	5 (920) 5 (920) ERE	0.0000000000						4	0.00	0.00	0.00	0.42	0.04
					-			5	0.00	0.00	0.00	0.12	0.01
co	0.00	0.03	0.03	mg/m ³	Annual mean*	0.03	mg/m ³	6					
Benzene	0.00	0.03	0.03	µ@/m*	Annual mean	0.03	µg/m²	7				-	1
1,3-butadiene	0.00	0.02	0.02	µg/m ³	Annual mean	0.02	µg/m ³	8					1
NO,	0.0	5.9	5.9	µg/m ²	3	Not applicable		9					
NO ₂	0.0	2.4	2.4	µg/m ³	Annual mean*	2.4	µg/m ³	10					6
PM ₁₀		- 104 S	1.12		Annual mean	8.3	ug/m ²	11					
	7.8	0.57	8.32	µg/m*	Days >50µg/m ²	0	Days	12			+ +		-

DMPR. Accorement of Local Air Quality

OUTPUT SHEET

			co*	Benzene	1,3-butadiene	NO ₂	NO2*	PM	10
biceptor number	Name	Year	Annual mean mg/m ³	Annual mean µg/m ¹	Annual mean µQ ^{im³}	Annual mean ug/m ³	Annual mean	Annual mean Igim ¹	Days ≻50µg/m²
1	(Base)	2017	0.01	0.01	0.01	3.20	1.44	8.34	0.00
2	(Do Min)	2023	0.01	0.01	0.01	3.13	1.41	8.09	0.00
3	(Red)	2023	0.02	0.02	0.02	4.81	2,03	8,24	0.00
4	(Yellow)	2023	0.02	0.02	0.02	4.58	1,95	8.21	0.00
5	(Bkae 1)	2023	0.02	0.02	0.02	4.56	1.94	8.20	0.00
6	(Bhas 283)	2023	0.02	0.02	0.02	4.56	1.94	8.20	0.00
7	(Basse)	2017	0.01	0.01	0.01	2.12	1.01	8.20	0.00
8	(Do Min)	2023	0.01	0.01	0.01	2.10	1.00	7.96	0.00
9	(Red)	2023	0.03	0.03	0.03	6,33	2.55	8.36	0.00
10	(Yellow)	2023	0.03	0.03	0.02	5.64	2.32	8,30	0.00
11	(Blue 1-3)	2023	0.03	0.03	0.02	5.87	2.40	8.32	0.00
						-	-		
								2	
				-					
						-			

Receptor Nar	ne		(Blue 2))(Receptor nu	mber	6						
Assessment	year	2023			0								
Results					13			Contrib	ution of e	each link	to annual	mean	
		Annual mea	in-		For compariso	n with Air Qual	ity Standards	Link number C	:0 (ng/m ¹)	Benzene (µg/m²)	1,3-butadiene (µg/m²)	NOx (µg/m²)	PM ₁₀ (µg/m
Pollutant								1	0.00	0.00	0.00	0.97	0.10
Ponusant	Background	Read traffic						2	0.00	0.00	0.00	0.91	0.06
	concentration	component	Total	Units	Metric	Value	Units	3	0.02	0.03	0.02	5.73	0.63
	a visan sonaraa	0.00000000						4	0.00	0.00	0.00	0.07	0.01
					-	0.00		3	0.00	0.00	0.00	0.11	0.01
co	0.00	0.03	0.03		Annual mean*	0.03	mg/m ³	6					
Benzene	0.00	0.03	0.03	µg/m*	Annual mean	0.03	µØ/m²	7					
1,3-butadiene	0.00	0.03	0.03	µg/m ³	Annual mean	0.03	HB/m3	8				3	16
NO,	0.0	7.8	7.8	µg/m [*]		Not applicable		9					
NO ₂	0.0	3.0	3.0	µg/m ³	Annual mean*	3.0	µg/m ³	10					21
PM ₁₀			1.12		Annual mean	8.6	ug/m ³	11					
	7.8	0.82	8.57	µg/m*	Days >50µg/m ¹		Days	12					1

DMPR. Accorement of Local Air Quality

OUTPUT SHEET

All receptors	s			Po	llutant conce	entrations a	t receptor		
	19		co*	Benzene	1,3-butadiene	NO,	NO2*	PM	10
Receptor number	Name	Year	Annual mean mg/m ³	Annual mean µgim ¹	Annual mean µg/m ³	Annual mean ug/m ³	Annual mean	Annual mean ugim ¹	Days ≻50µg/m
71	(Base)	2017	0.03	0.03	0.03	7.23	2.85	8.79	0.00
2	(Do Min)	2023	0.03	0.03	0.03	7.03	2.78	8.53	0.00
3	(Red)	2023	0.03	0.03	0.03	7.79	3.03	8.57	0.00
4	(Yieliznar)	2023	0.03	0.03	0.03	7.60	2.97	8.55	0.00
5	(Blue 1)	2023	0.03	0.03	0.03	7.79	3.03	8.57	0.00
6	(Blor 2 & 3)	2023	0.03	0.03	0.03	7.79	3.03	8.57	0.00

his spreadsheet calculates the nitrogen dioxide concentration from the modelled oxides of nitrogen co	oncentrations
1). Confirm that the General inputs spreadsheet has been completed	
The input selections are shown at the head of the Table below.	
2.) Type In (or paste and copy from another spreadsheet)	
1) the receptor identifier (Receptor ID) and its Easting and Northing. [Optional]	
2) the modelled contribution from roads to oxides of nitrogen concentrations (Road increment NO ₃)	
3) the local background concentration as NO ₂ (2d.p)	
You may atternatively enter the local background as Nox	
Leave the redundant background NO ₂ or NO ₂ columns blank as appropriate	
Note that calculations are faster if you input background NO _x rather than background NO ₂	
3). The default set-up is to use the fraction of oxides emitted as NO ₂ from the General inputs spreadsheet	
Leave the "Fraction emitted as NO ₂ " column empty to use the default set up.	
However, you can overwrite the defaults by typing appropriate values (0-1) into this column.	
The fNO2 spreadsheet provides additional values.	
4) Click the mouse on the run button to run the model.	Run NO ₂ to NO ₂
The model will calculate:	
 a) the total nitrogen dioxide concentration at the receptor (Total NO₂) 	
b) the incremental contribution to nitrogen dioxide concentrations from the road vehicle emissions (Re	oad NO ₂)
Copy and paste the results to another spreadsheet.	
	Clear spreadsheet
5) Click the mouse on the Clear button to clear the spreadsheet	
Local Authority: Newry Mourne and Down Year: Traffic Mix: /	2017 All non-urban UK traffic
Traine mix.	

Receptor ID	Easting,m	Northing, m	Road Increment NO _x	Background	µg m ^{-a}	Fraction emitted as NO ₂	Total NO ₂	Road NO ₂	Notes
No. Status			µg m ^{~3}	NO _x	NO ₂		μg m ⁻³	µg m ^{°4}	
	(Base)		20.01	9.28	7.15		17.9	10.75	
	(Base)		1.46	6.63	5.19		6.01	0.82	
	(B	ase)	5.76	7.5	5.83		9.03	3.2	
	(Base)	10 M 1400	0.32	6.49	5.08		5.26	0.18	
	(Base)		0.24	5.68	4,47		4.6	0.13	
	(Base)		0.10	5.68	4.47		4.53	0.06	
	(Base)	5	1.16	5.68	4.47		5.12	0.65	
	(Base)	1	3.20	5.78	4.54		6.34	1.8	
	(Base)		2.12	5.78	4.54		5.73	1.19	
	(Bas	0)	7.23	5.78	4.54		8.57	4.03	

preadsneet	calcula	nes me nitros	pen dioxide concei	nera	abon from th	e modelle	d oxides of nitrogen co	meentrations	8			
			Isheet has been comp									
		lections are shown copy from anoth	at the head of the Tab er spreadsheet)	ie be	eicw.							
100.00		10	ceptor ID) and its East	tini	and Northlee	Continued						
2) 1	the mode	elled contribution	from roads to axider	s of	nitrogen conce	entrations (R	oad increment NO,)					
-3)1	he local I		centration as NO ₂ (2d.									
			stively enter the local ba relant background NO,			nk as access	state					
			ations are faster if you									
							1996					
			m of oxides emitted a mn empty to use the			menal reputs	sheedeneet					
ever, you ca	n overwr	the the defaults b	y typing appropriate			tis column.						
		ovides additional										
		run button to run will calculate:	n the model.						Run NO, 1	e NO ₂		
	. course a		igen dioxide concentral	ion a	at the receptor (Total NO ₂			-			
		b) the increment	ital contribution to nitrog	201	dicivide concent	tations from t	he road vohicle emissions (R	oad NO ₂)				
Cas	e and pa	the results to a	another spreadsheet									
			clear the spreadshee						Clear spr	sedsfeet		
							12242		<u> </u>			
al Authority:	Now	rry Mourne and D	lows				Traffic Mix:	All pon-urban		1.	1	
ceptor ID Ea	sting re	Northing, m	Road increment NC	λ.	Background	ag m ²	Fraction emitted as NO ₂	Total		Road NO ₂	Notes	
of the state of the	and the	ALWESSEE.	"nga		NO,	NO,	a factor and a store of	a g n		ug m ²		
	(nMro) Red)			9.32		5.41		15.7		10.32		
0	(elcar)		1	6.41	6.94	5.41		14.2	4	8.63		
1	tue Opto	otes 1-3)	1	7 14 1 41	5.05	5.41		94.0		9.2		
	(Red)			1.33	5.05	3.98		4.7.	8: L	0.74		
	(Yalow) (Blue 1-)					198		4.7		0.77		
	(0	Do Mirt)		5.78		4.48		7.6		3.19		
	- 6	Red) (elow)		4.48 4.08		4.48		6.9		2.48		
	(B (Do Mn)	Skei Optiona1-3)		8.04		4.48		83		4.42		
_	Red& Ye		3	0.32	4.95	3.91		40	1	0.18		
	Blue Ti Blue 21	0.00		0.60	4.95	3.91		4.2		0.54		
	(Blue 3)			0.65	4.95	3.91		4.2	2.	0.50		
	(Do Ma (Red)	()				3.46		3.5		0.13		
	(Yelce			1.19	4.36	3.46		4.1		0.67		
	(Blue 1 (Blue 2			0.33	4.36	340		3.6		0.18		
	(Ehas 2	6	3	0.79	4.38	3.46		35		0.44		
	(Do Mir (Red)			0,10	4.36	2.48		3.0	S	0.2		
	(Yellow Elux 1		· · · · · · · · · · · · · · · · · · ·	0.31	4.36	3.48		3.6		0.17		
	Eluo 2	6		0.24	4.36	3.40		3.5	2	0.15		
	E (Elue 3 Do Min)			0.24	4.36	3.46		3.9		0.13		
	Red)			1.91	4.36	3.40		4.5	2	1.07		
	(Yellon) (Bite 1-3	0		1.82 1.16		3.48		4.4		1.02		
	Do Min		3.13		4.45	3.53		5.2		1.78		
	(Red) (Yellow)		4.81	-	4.45	3.53		6.0		2.67		
	(Ehay 1)		4.56		4.45	3.53		6.0	×	2.53		
	(Blue 28 (Do Min)		4.56	_	4.45	3.53		6.0		2.53		
	(Red)		6.33		4.45	3.53		7.0		3.5		
	(Yellow) (Blue 1-)	30	5.64	_	4.45	3.53		6.0		3.13 3.26		
	Do	Merj	7.03		4.45	3.53		7.4		3.88		
	(Yell	low)	7.60		4.45	3.63		7.7	1	8		
	(files	283	7.79		4.45	3.53		7.8		43		

Project number: 60472927

Please Select:									
Base Year	2017 💌		Pollutant	NO2 💌		Calculate			
Assessment Year	2023 -								
		ed Annual Mear trations (µg/m²			Modelled 2017	Contraction of the Contraction of the			lions (µg/m²)
Receptor ID	Base Year	Projected Base Year	Do-Minimum	Do-Something	Base Year / 2023 Do- Minimum (Ratio A)	Factor Between 2017 / 2023 (Ratio B)	Gap Factor	Do-Minimum	Do-Somethi
Reid	17.9	15.3	15.70	13.89	0.85	0.96	1.12	17.6	15.5
	6.01	4.75	4.78	4.72	0.79	0.96	1.21	5.8	5.7
	9.03	7.47	7.67	6.96	0.83	0.96	1.16	8.9	8.0
	5.26	4.08	4.09	4.09	0.78	0.96	1.23	5.0	5.0
	4.6	3.58	3.59	4.25	0.78	0.96	1.23	4.4	5.2
	4.53	3.51	3.52	3.66	0.77	0.96	1.23	4.3	4.5
	5.12	4.06	4.11	4.53	0.79	0.96	1.21	5.0	5.5
	6.34	5.21	5.28	6.2	0.82	0.96	1.16	6.1	7,2
	5.73	4.64	4.7	7.03	0.81	0.96	1.18	5.6	8.3
	8.57	7.29	7.41	7.83	0.85	0.96	1.12	8.3	8.8
	17.9	15.3	15.73	14.24	0.85	0.96	1.12	17.6	15.9
	6.01	4.75	4.78	4.75	0.79	0.96	1.21	5.8	5.7
		and the second			1000	1000	102-04111-	Desiz 1	3600
	9.03	7.47	7.67	6.73	0.83	0.96	1.16	8.9	7.8
	5.26	4.06	4.09	4.09	0.78	0.96	1.23	5.0	5.0
	4.6	3.58	3.59	4.13	0.78	0.96	1.23	4.4	5.1
	4.53	3.51	3.52	3.63	0.77	0.96	1.23	4.3	4.5
	5.12	4.06	4.11	4.48	0.79	0.96	1.21	5.0	5.4
	6.34	5.21	5.28	6.08	0.82	0.96	1.16	6.1 5.6	7.1
	5,73	4.64	4.7	6.66	0.81	0.96	1.18	8.3	8.7
	17.9	15.3	15.73	14.61	0.85	0.96	1.12	17.6	16.3
	6.01	4.75	4.78	4.7	0.79	0.96	1.21	5.8	5.7
	9.03	7.47	7.57	8.9	0.83	0.96	1.16	8.9	10.3
	5.26	4.08	4.09	4.25	0.78	0.96	1.23	5.0	5.2
	4.6	3.58	3.59	3.64	0.78	0.96	1.23	4.4	4.5
	4.53	3.51	3.52	4.4	0.77	0.96	1.23	4.3	5,4
	5.12	4.06	4.11	4.11	0.79	0.96	1.21	5.0	5.0
	6.34	5.21	5.28	6.06	0.82	0.96	1.16	6.1	7,1
	5.73	4.64	4.7	6.79	0.81	0.96	1.18	5.6	8.0
	8.57	7.29	7.41	7.83	0.85	0.96	1.12	8.3	8.8
	17.9	15.3	15.73	14.61	0.85	0.96	1.12	17.6	16.3
	6.01	4.75	4.78	4.7	0.79	0.96	1.21	5.8	5.7
	9.03	7.47	7.67	8,9	0.83	0.96	1.16	8.9	10.3
	5.26	4.06	4.09	4.28	0.78	0.96	1.23	5.0	5.3
	4.6	3.58	3.59	3.9	0.78	0.96	1.23	4.4	4.8
	4,53	3.51	3.52	3.59	0.77	0.96	1.23	4.3	4.4
	5.12	4.06	4.11	4.11	0.79	0.96	1.21	5.0	5.0
	6.34	5.21	5.28	6.06	0.82	0.96	1.16	6.1	7.1
	5.73	4.64	4.7	6.79	0.81	0.96	1.18	5.6	8.0
	8.57	7.29	7.41	7.83	0.85	0.96	1.12	8.3	8.8
	17.9	15.3	15.73	14.61	0.85		1.12		16.3
	6.01	4.75	4.78	4.7	0.79	0.96	1,21	5.8 8.9	5,7
	9.03	4.08	7.67	8.9	0.83	0.96	1.16	5.0	10.3
	5.26	3.58	4.09	4.27	0.78	0.96	1.23	4,4	4.8
	4.6	3.51	3.59	3.9	0.76	0.96	1.23	4.3	4.0
	5.12	4.06	4.11	4.11	0.79	0.96	1.21	5.0	5.0
	6.34	5.21	5.28	6.06	0.82	0.96	1.16	6.1	7.1
	5.73	4.64	4.7	6.79	0.81	0.96	1.18	5.6	8.0
	8.57	7.29	7.41	7.83	0.85	0.96	1.12	8.3	8.8

Summary

1

Name	Baseline Regional						
Year	2017 Number of links		46				
P	diutant	Total emission	Units				
	CO	63,717	kg/year				
	THC	7,866	kgiyear				
	NO,	30.444	kg/year				
	PM ₁₀	1,165	hg/year				
	C	4.961	tonnes/year				

All links

Link				Emissions		
number	Link tille	CO (kg/year)	THC (kg/year)	NO, (kg/year)	PM ₁₀ (kg/year)	C (tonnes/year)
1	106	232	30	123	3	
2	134	1,054	132	309	10	1
3	138	707	89	216	7	3
4	140	136	17	40	3	-
5	144	1,195	148	335	11	
6	148	1,418	174	388	13	6
7	154	1,250	155	351	12	
8	100	640	79	179		
9	168	395	49	109	4	1
10	172	5,527	681	1,528	52	26
11	174	2,485	330	1,138	30 23	15
12	176	1.875	249	658		
13	178	1,118	149	491	13	6
14	170	447	59	197	5	2
15	190	1,518	193	473	16	
16	192	460	60	170		
. 17	194	4,516	597	1,756	52	25
18	195	885	118	374	10	
19	200	6,833	824	5,013	155	65
20	202	2,981	362	2,158	66	28
21	254	1,499	197	803	20	10
22	241	12	1	7	0	
23	243	14	2	6	0	
24	244	60	8	35	1	10 200
25	304	345	44	218	6	
26	306	333	44	179	4	
27	327	319	39	220	6	
28	328	200	24	150	5	32
29	330	8,269	978	8,201	212	80
30	332	1,034	122	775	27	10
31	334	9,302	1,100	6,976	239	90
32	236	2,213	261	1,661	57	21
33	340	418	54	249	6 5	1
34	342	279		188	5	1
35	344	295	37	195	5	1 24
36	348	1,798	212	1,350	47	17
37	352	190	24	129	.4	1
38	354	270	34	183	5	2
39	356	137	1.8	69	2	
40	358	156	21	76	2	
41	359	3	0	1	0	2
42	374	292	37	184	5	
43	380	236 15	30	152	4	
-44	398	15	2	10	0	
45	399	331	43	201	5	2
46	403	29	4	18	0	£

Su	mmary		
Name	Do Minimum 2	023	
Year	2023	Number of links	46
P	ollutant	Total emission	Units
	ço	68.695	kg/year
	THC	8,406	kg/year
	NO ₃	37,296	Refyeer
	PM,	1,205	kg/year
	c	5,180	tonnes/year

All links

Link	10000			Emissions		
number	Link title	CO (kg/year)	THC (kg/year)	NO, (kg/year)	PM ₁₀ (kg/year)	C (tonnes/year)
1	106	247	33	125	3	0
2	134	1,151	144	316	11	- 3
3	158	766	97	219	7	U - 30
4	140	149	19	41	1	
5	144	1,318	162	343	12	
6	146	1,573	192	398	14	0 01
1	154	1,378	170	360	12	8 13
8	160	705	87	183	6	
9	168	437	53	112	4	2
10	172	6,114	749	1,566	54 31	2
11	174	2,680	356	1,159	31	1
12	176	2,022	269	875	23	1
13	178	1,211	161	501	14	8
14	179	485	64	200	6	2 23
15	190	1,680	212	486	16	3
16	192	495	65	173	5	2
17	104	4,964	654	1,799	54	2
18	195	944	125	380	- 11	2
19	200	7,289	878	5,133	163	6
20	202	3,179	385	2,209	68	2
21	241	12	2	8	0	<u> </u>
22	243	15	2	6	0	<u>e</u>
23	244	63	8	36	1	
24	304	368	47	223	6	
25	306	356	47	183	4	<u>1 </u>
26	327	340	42	224	6	2
27	328	214	25	154	5	1
26	330	8,815	1,042	6,352	219	8
29	332	1,102	130	794	27	1
30	334	9,917	1,172	7,146	247	9
31	336	2,359	279	1,702	59	2
32	340	447	58 57	254	6	
33	342	298	37	192		
34	344	314		199	5	2
35	348	1,917	226	1,384	48	
36	362	203	25	132	4	
37 38	354	288	36	187	5	<u>.</u>
38		14/	22	77	2	1 1
40	158			1		
41	359	312	0 40	187	0	
41	3/4	252	32	155	4	
42	380	16	2	100	4	
43	399	354	45	205	5	
44	403	304	40	200	0	<u> </u>
45	403 214	1,601	210	819	20	1

Su	mmary		
Name	Red Option 20	23	
Year	2023	Number of links	56
P	silutant	Total emission	Units
	ço	75,372	kg/year
	THC	9,242	kglyser
	NO,	44,918	Rejyear
	PM	1,438	kg/year
	C	6 123	Toppet lungt

All links

Link	Link Ulle	Emisaions					
number		CO (kg)year)	THC (kg/year)	NO, (kg/year)	PM ₁₀ (kg/year)	C (tonnes/year)	
1	106	223	29	113	3		
2	134	1,002	126	280	10	4	
3	158	662	84	192	6		
4	140	122	15	34		Si	
5	144	1,022	127	277	9		
6	146	1,162	144	310	31	2 (M	
1	154	1,033	129	282	10	8 J.	
8	160	531	66	144	5		
9	168	331	41	89	3	3 I I I I I I I I I I I I I I I I I I I	
10	172	4,637	575	1,245	43 25	2	
11	174	2,145	265	950			
12	176	1,618	215	717	19	24 - 13	
13	178	963	127	407	11		
14	179	381	51 144	16.3	4		
	190	1,1,21	47	127	4	÷	
16 17	192	3,385	449	1.315	4		
10	194	3,380	95	287	8		
19	200	5.594	673	3.946	126	5	
20	202	2,504	303	1,744	54	2	
21	203	2,110	256	1,469	46	1	
22	217	220	29	112	3	<u>.</u>	
23	243	15	20	6	0		
24	243	80	11	32	1	-	
25	304	328	42	199	5	DI 23	
26	306	317	42	164	4	8	
27	327	383	48	252	7	9	
26	328	234	28	169	6		
29	130	9,685	1,146	6,973	240	9	
30	332	1,211	143	872	30	1	
31	334	10,896	1,289	7.844	270	5.0	
32	336	2,626	310	1,893	65	2	
33	340	296	38	171	4	7	
34	342	193	24	127	4	S	
35	344	251	31	160	4	8	
36	348	2,166	256	1,563	54	2	
37	352	339	42	215	6	2 20	
38	354	406	51	260	7	31	
39	356	222	28	138	4	8 - 5 8	
40	357	5,053	606	3,585	116	4	
41	358	323	43	130	4	4	
42	374	345	44	207	5	S	
43	380	277	35	170		1 9	
44	398	18	2	12	0	8 3	
45	300	394	51	227	6	S 13	
46	403	41	5	25 387	1	i i	
47	500	596	74		- 11	1 - 18	
48	501	3,976	491	2,640	75	3	
49	503	353	44	235	7		
50	504	220	27	146	4	1	
51	505	183		114	3	2	
52	506	183	23	116	3		
53	507	43	5	29	1		
54	508	210	26	135	4	1 8	
55	509	893 788	108	620 549	19		

OUTPUT SHEET

Summary			
Name	Yelow 2023		
Year 2023		Number of links	55
P	ollutant	Total emission	Units
	ço	82,855	kg/year
	THC	10,167	kg/year
NO,		49,405	kg/year
PM		1,571	kg/year
c		6,742	Tonnes/year

All links

Link	Link title	Emisaions					
number		co	THC	NO.	PM ₁₈	c	
		(kg/year)	(kg/year)	(kg/year)	(kg/year)	(tonnes/year)	
1	106	223	29	115	3		
2	134	1,002	126	280	10		
3	140	129	16	36	1		
4	144	1,101	137	295	10	2	
5	148	1,304	161	342	12		
6	154	1,153	143	310	11		
1	160	592	73	158	5	2	
8	168	368	45	97	3		
9	172	5,151	636	1,360	47	2	
10	174	2,339 1,765	311	1,027	27 20	1	
11	176	1,765	234	775	20		
12	178	1,046	139	442	12		
13	179	418	56	177	5		
14	190	1,181	151	363	12	A 33	
15	192	409	54	145	- 4		
16	104	3,662	485	1,405	41	2	
17	105	758	101	305	9	4	
18	200	5,070	610	3,580	115	4	
19	202	2,295	278	1,599	50	2	
20	203	6,189	749	4,312	134	5	
21	217	738	97	377	9	2 - 2	
22	244	80	11	32	1		
23	304	328	42	199	5		
24	306	317	42	164	4	S 13	
25	1277	383	48	252	7		
26	328		28	169	6	1 23	
27	330	234 9,685	1.146	6,973	240	9	
26	132	1,211	143	872	30	1	
29	254	10,896	1,289	7,844	270	1.0	
30	338	2,626	310	1,893	65	2	
31	340	355	46	203	5	-	
32	342	355 230 273	46 29	150	5		
33	344	323	34	174	4	-	
34	348	2,166	256	1,563	54	2	
35	362	339	42	218	6	-	
36	354	406	51	260	7		
37	356	204	26	128	3		
38	309	5,310	637	3,766	122	4	
39	358	306	41	123			
40	308	345	44	207	3	i di	
40	3/4	277	35	170	4	<u> </u>	
	380			12	4	· · · · · ·	
42	393	18	2	227	0		
43				441	1		
44	403	41	5	25	5		
45		296		193	0		
46	501	3,205	401	2,046	55 56		
47	502	2,939	363	1,961		2	
48	503	288	35	192	6	ş	
49	504	134	17	89	3	2	
50	505	196	25	121	3		
51	506	120	15	76	2	8	
52	507	33	4	22	. t		
53	508	255	32	155	4	C	
54	509	1,322	160	918	28). (1	
55	511	748	91	521	16	2	

Summary				
Name	Blue Option 1 2	2023		
Year 2023		Number of links	41	
Pollutant		Total emission	Units	
	ço	36,211	kg/year	
	THC	4,565	kg/year	
NO,		17,594	kg/year	
PM ₁₀		530	kg/year	
c		2,503	tonnes/year	

All links

Link	200 (1007)	Emissions					
number	Link title	CO (kgiyear)	THC (kg/year)	NO, (kp/year)	PM _{re} (kg/year)	C (tonnes/year)	
1	138	660	83	192	6		
2	140	121	15	34	1	4	
3	144	1,018	127	276	9	4	
4	148	1,099	136	296	10	S - 13	
5	154	979	122	269	9		
6	160	503	63	138	5	5	
1	163	315	39	85	3	8 5	
8	172	4,406	548	1,192	41	20	
9	174	2,055	273	914	24	12	
10	176	1,551	206	689	18		
11	178	910	121	391	10	1	
12	179	364	48	156	4	S 33	
13	190	1,304	167	395	13	S	
14	192	356	47	127	.4	2	
15	194	3,771	499	1,439	42	2	
16	195	775	103	312	9	3	
17	203	3,756	452	2,648	84	3	
18	217	408	54	209	5		
19	244	80	11	32	1		
20	340	270	35	156	4		
21	342	175	22	115	3	S	
22	344	240	30	153	4	1	
23	362	289	36	187	5	8 8	
24	354	364	45	234	6		
25	356	214	27	134	4	5 - C	
26	357	4,932	591	3.500	113	4	
27	358	296	40	120	3	1 S	
26	374	345	.44	207	5		
29	380	277	35	170	4		
30	403	11	1	7	0		
31	500	581	72	377	10	S - 38	
32	501	8	1	5	0		
33	502	149	.18	101	3	5 A	
34	503	324	40	216	6		
35	504	259	32	170	5	2 53	
36	505	503	64	309	8	3	
37	508	215	27	136	-4		
38	507	48	6	32	1	8	
39	508	344	42	233	7	2	
40	509	1.720	216	1,095	29		
41	510	217	27	144	4	1	

Su			
Name	Biue Option 2 2	2023	
Year 2023		Number of links	41
Pollutant		Total emission	Units
co		36,013	kg/year
	THC	4,540	kg/year
NO,		17,472	kg/year
PM ₁₀		520	kg/year
c		2,496	tonnes/year

All links

Link	210.01220	Emissions					
number	Link title	CO (kgiyear)	THC (kg/year)	NO, (kp/year)	PM _{re} (kg/year)	C (tonnes/year)	
1	138	660	83	192	6	3	
2	140	121	15	34	1	4	
3	144	1,018	127	276	9	4	
4	148	1,099	136	296	10	9 - 13 -	
5	154	979	122	269	9		
6	160	503	63	138	5	5	
1	168	315	39	85	3		
8	172	4,406	548	1,192	41	20	
9	174	2,055	273	914	24	1	
10	176	1,551	206	689	18	1	
11	178	910	121	391	10		
12	179	364	48	156	4		
13	190	1,304	167	395	13		
14	192	356	47	127		2	
15	194	3,771	499	1,439	42	2	
16	195	775	103	312	9	37	
17	203	3,756	452	2,648	84	30	
18	217	408	54	209	5	7	
19	244	08	11	32	1	3	
20	340	270	35	156	4		
21	342	175	22	115	3	S	
22	344	240	30	153	4	S	
23	352	289	36	187	.5	2 C 2	
24	354	364	45	234	6		
25	156	214	27	134	4	0 13	
26	1357	4,932	591	3.500	113		
27	358	296	40	120	3	46	
26	374	345	44	207	5		
29	380	277	35	170	4		
30	403	11	1	7	0		
31	500	581	72	377	10		
32	501	8	1	5	0		
33	502	138	.17	93	3		
34	503	324	40	216	6	5 53	
35	504	259	32	170	5		
36	505	503	64	309	8		
37	508	215	27	136	-4	(
38	507	48	6	32	1	8	
39	508	916	114	590	16	2	
40	509	973	121	627	17		
41	510	206	25	140	4	1	

OUTPUT SHEET

Summary			
Name	Blue Option 3		
Year 2023		Number of links	41
Pollutant		Total emission	Units
	ço	36,014	kg/year
	THC	4,540	kgiyear
NO,		NO, 17,474	
PM		PM ₁₀ 527	
c		2,487	

All links

Link	20.0120	Emissions					
number	Link title	CO (kgiyear)	THC (kg/year)	NO, (kg/year)	PM ₁₀ (kg/year)	C (tonnes/year)	
1	138	660	83	192	: 6	-	
2	140	121	15	34	1	4	
3	144	1,018	127	276	9	3	
4	148	1,099	136	296	10	9 - 14	
5	154	979	122	269	9		
6	160	503	63	138	5		
1	168	315	39	85	3		
8	172	4,406	548	1,192	41	2	
9	174	2,055	273	914	24	1	
10	176	1,551	206	689	18	8	
11	178	910	121	391	10	2 XI	
12	179	364	48	156	4	i	
13	190	1,304	167	395	13	9	
14	192	356	47	127	. 4	2	
15	194	3,771	499	1,439	42	2	
16	195	775	103	312	9	30	
17	203	3,756	452	2,648	84	3	
18	217	408	54	209	. 6	S7 - 22	
19	244	08	11	32	1	3	
20	340	270	35	156	4		
21	342	175	22	115	3	S	
22	344	240	30	153	- 4	1	
23	362	289	36	187	.5	8 - B	
24	354	364	45	234	6	9 8	
25	356	214	27	134	4	Q 13	
26	357	4,932	591	3,500	113	4	
27	358	298	40	120	3	5	
26	374	345	44	207	5		
29	380	277	35	170	4		
30	403	11	1	7	0		
31	500	581	72	377	10	S - 38	
32	501	8	1	5	0		
33	502	195	24	132	4	7	
34	503	324	40	216	6	8 - 13	
35	504	259	32	170	5	Q 53	
36	505	503	64	309	8		
37	500	215	27	136	- 4	2	
38	507	48	6	32	. 1	S	
39	508	1,145	143	735	20	S	
40	509	629	79	406	11		
41	510	264	32	178	.5	7	

OUTPUT SHEET

Summary

Name	Do Minimum 2037				
Year 2025		Number of links	44		
Pol	llutant	Total emission	Units		
co		76,503	kg/year		
- 15	гнс	9,418	kg/year		
NO,		40,844	kgiyear		
PM.		1,320	kg/year		
c		5.699	tonnesivear		

All links Emissions Link number Link title THC (kg/year) NO, (kg/year) PM₁₁ (kg/year) co c 62 42 (kg/year) tion 1,309 862 169 1,524 1,831 134 138 140 144 352 243 46 385 448 162 108 21 186 222 194 100 12 8 2 13 16 14 7 68 79 71 36 1,591 816 404 206 7,109 864 1,275 962 553 221 546 2,993 2,258 1,363 545 1,954 550 5,710 1,038 8,049 3,493 1,762 14 70 406 394 26 15 6 19 135 79 32 95 30 312 60 749 324 121 300 181 72 245 72 750 138 965 424 232 2 8 52 52 52 52 62 46 1,145 143 12 13 14 179 190 190 2,005 417 5,626 2,421 898 17 18 62 12 179 75 22 0 1 8 5 7 39 243 200 245 6,956 870 7,956 33 27 33 920 115 1,035 247 37 28 30 306 9,676 1,209 10,885 2,590 30 334 336 7,826 1,288 65 30 31 327 346 2,105 223 317 41 43 248 39 21 24 0 210 218 1,516 145 204 78 85 1 348 352 4 6 20 28 11 12 359 374 277 18 390 34 35 170 11 224 21 398 50 4 6 1 2 30 3 403

OUTPUT SHEET

Su			
Name	Red Design Ye	uar .	
Year	2025	Number of links	54
P	ollutant	Total emission	Units
	ço	83,206	kg/year
	THC	10,203	kgiyear
NO,		49,102	kg/year
PM _{in}		1,572	kgiyear
c		6.726	tonnes/year

All links

Link		Emissions					
number	Link title	CO (kg/year)	THC (kg/year)	NO, (kg/year)	PM ₁₀ (kg/year)	C (tonnes/year	
1	106	246	32	124	3	(instance) form	
2	134	1,134	141	311	11		
3	158	742	94	213		6 8	
4	140	137	17	36	7		
5	144	1,167	144	309	11	1 Bi	
6	146	1,333	164	347	12	S ()	
7	154	1,176	146	314	11		
8	160	605	75	161	6	1 2	
9	168	379	47	99	3	2 0	
10	172	5,307	654	1,391	48	2	
11	174	2,388	317	1,044	28	1	
12	176	1.801	239	788	21	1	
13	178	1,066	142	448	12	()	
14	179	426	57	179	A		
15	190	426 1.276	163	387	5	()	
16	192	394	52	139	4	ŝ d	
17	104	3.832	507	1,455	43	2	
18	105	785	104	315	9		
19	200	6,147	740	4,329	138	-	
20	202	2,752	333	1,912	59	2	
21	203	2,319	281	1,611	50		
	217	242	32	123	3		
22	217 264	88	12		1		
23	269	361	46	36			
24		361	46	218	6		
25	308			179	4	<u>i</u>	
26	327	421	52	276	8		
27	330	10,630	1,259	7,635	262	1,0	
26	322	1,329	157	954	33	1	
29	334	11,959	1,416	8,589	294	1,1	
30	338	2,883	341	2,073	71	2	
31	340	326	42	187	5		
32	342	213 276	26 35	138	4	1.	
33	344	276		175			
34	348	2,378	281	1,712	59	2	
35	352	372	47	239	6	š	
36	354	447	56 31	285	8		
37	356	244		152	4	S S	
38	357	5,550	666	3,92B	127	5	
39	358	365	47	143	4	3	
40	374	380	49	226	6		
41	380	305	39	186	5	S	
42	399	20	2	13	0		
43	399	435	56	249	6	() () () () () () () () () () () () () (
44	403	46	6	27	1	9 N	
45	500	657	82	424	12	SI 14	
46	501	4,371	540	2,890	82		
47	503	388	48	257	7	S	
48	504	242	30	160	4	8	
49	505	201	25	125	3	S 20	
50	500	202	25	127	3	S	
51	507	47	6	32	1		
52	508	230	29	148	4	ý – N	
53	509	981	119	680	21	1	
54	511	866	105	601	19	2	

OUTPUT SHEET

Su	mmary			
Name	Yelow 2037			
Year	2025	Number of links	55	
Pollutant		Total emission	Units	
	ço	92,348	kg/year	
	THC	11,333	kg/year	
	NO,	54,280	kgiyear	
	PM	1,725	kg/year	
	C	7,437	tonnes/year	

All links

Link		Emisakons							
number	Link title	co	THC	NO,	PM _{te}	c			
		(kg/year)	(kg/year)	(kg/year)	(kg/year)	(tonnes/year			
1	100	246	32	124	3	0			
2	134	1,134	141	311	11				
3	138	768	97	219	7	Q 2.			
4	140	146	18	40		1			
5	144	1,261	155	330	.15	1			
6	146	1,505	184	383	13	8			
1	154	1,320	163	346	12	S			
8	160	678	63	177	6	3X			
9	168	423	52	109	4	<u> </u>			
10	172	5,928	727	1,524	53 30	2			
11	174	2,607	346	1,129					
12	176	1,967	261	852	23	S			
13	178	1,173	156	486	13	22			
14	179	469	62 172	195	5 13	3 8			
15	190	1,348		405		S			
16	192	454	60	159	5	1			
17	104	4,158	550	1,556	46				
18	105	833 5.571	111	335	9	1 () () () () () () () () () (
19	200	5.571	670	3.925	126	8			
20	202	2,522	305	1,753	54	1 8			
21	203	6,802	824	4,72B	147				
22	217	813	107	414	10	S			
23	264	88	12	36	1				
24	304	361	46	218	6				
25	306	350	46	179	4	<u>5</u>			
26	327	421	52	276	4				
27	330	10,630	1,259	7.635	262	1.0			
28	152	1,329	157	954	33				
29	154	11,959	1,416	8.580	294	1/			
30	338	2,883	341	2,073	71				
31	340	391	50	223		n			
32	342	580		164	0				
33	364	252 300	50 31 38	190	6 0 0	-			
34	348	2,378	281	1,712	59	2			
35	340	372	47	239	6				
		447	56	285	8				
36	354	224	28	285	4	}(
		5,832	700	4,125	133				
38	357	336	45	4,125	133				
			40		4				
40	374	380	49	226	6				
41	380	305	39	186	5	-			
42	393	20	2	13	0				
43	399	435	56	249	.6				
44	403	46	6	27	1	8 <u> </u>			
45	500	325	41	211	6	<u>i</u>			
46	501	3,526 3,231	442	2,241	60	5			
47	502	3,231	399	2,137	61				
48	503	316	39	210	6	8			
49	504	148	18	98	3	2 3			
50	505	218	28	132	3	2 1			
51	506	131	17	83	2	8 1			
52	507	36	4	25	t	8			
53	508	280	36	170	4				
54	509	1,452	176	1.006	31	2 9			
35	511	822	100	571	18	2			

Summary						
Name	Blue Option 1	2037				
Year	2025	Number of links	41			
P	ollutant	Total emission	Units			
	ço	40,445	kg/year			
	THC	5,092	kgiyear			
	NO,	19,362	Rejyear			
	PM	585	kg/year			
	c	2,768	tonnes/year			

All links

Link	40.0000		Emissions							
number	Link title	CO (kg)year)	THC (kg/year)	NO, (kg/year)	PM ₁₀ (kg/year)	C (tonnes/year)				
1	138	739	93	212	. 7	3				
2	140	137	17	38	- 1	1				
3	144	1,162	144	308	11	5				
4	148	1,257	155	331	11					
5	154	1,113	138	300	10					
6	160	572	71	154	5					
1	168	359	44	95	3	8 - 51				
8	172	5,030	622	1,330	46	22				
9	174	2,286	304	1.004	26	42				
10	176	1,725	229	758	20	10				
11	178	1,017	135	430	12					
12	179	407	54	172	5	8 - 1 1				
13	190	1,494	190	441	10	S				
14	192	394	52 567	139	4	2				
15	194	4,286		1,595	47	2				
16	195	852	113	342	10					
17	203	4,127	497	2,903	.93	31				
18	217	449	59	229	6					
19	244	.88	12	36	1	9				
20	340	297	38	171	4					
21	342	193	24	126	- 4	S				
22	344	264	33	168	5	3. S i				
23	352	318	40	205	6	2				
24	354	400	50	256	7					
25	356	235	30	146	4	Q. 12				
26	357	5,417	650	3,835	124	5				
27	358	328	44	132	4					
28	374	380	49	226	6					
29	380	305	39	186	5	2				
30	403	12	1	B	0					
31	500	638	80	413						
32	501	9	1	5	0					
33	502	164	20	110	3					
34	503	356	44	236	7	2				
35	504	285	35	187	5	š				
36	505	553	70	339	9					
37	506	237	30	149	- 4	S				
38	507	52	6	35	1					
39	508	378	46	265	7					
40	509	1,891	237	1.200	32	10				
41	510	239	30	158	4	1				

Summary Name Bus 2 2037 Year 2025 Number of links 41 Pollstant Total emission Units CO 40,226 kg/year THC 5,005 kg/year NO, 109,227 kg/year PMm 081 kg/year C 2,750 tomos/year

All links

Link	20.00220			Emissions		
number	Link title	CO (kgiyear)	THC (kg/year)	NO, (kg/year)	PM _{re} (kg/year)	C (tonnes/year)
1	138	739	93	212	7	3
2	140	137	17	38	1	2
3	144	1,162	144	308	11	5 5 5 2
4	148	1,257	155	331	:11	5
5	154	1,113	138	300	10	
6	160	572	71	154	5	2
1	168	359	44	95	3	2 61
8	172	5,030	622	1,330	46	23
9	174	2,286	304	1.004	26	12
10	176	1,725	229	758	20	10
11	178	1,017	135	430	12	6
12	179	407	54	172	5	2
13	190	1,494	190	441	10	2
14	192	394	52	139	4	
15	194	4,286	567	1,595	47	23
16	195	852	113	342	10	4
17	203	4,127	497	2,903	93	36
18	217	449	59	229	6	3
19	244	88	12	36	1	S
20	340	297	38	171	4	C
21	342	193	24	126	- 4	2
22	344	264	33	168	5	
23	352	318	40	205	6	S
24	154	400	50	256	7	1
25	156	235	30	146	4	5 - 13 1
26	357	5,417	650	3.835	124	50
27	358	328	44	132	4	50
26	374	380	49	226	6	
29	380	305	39	186	5	
30	403	12	1	B	0	1
31	500	638	80	413	- 11	
32	501	9	1	3	0	
33	502	151	19	102	3	1
34	503	356	44	236	7	
35	504	285	35	187	5	
36	505	553	70	339	9	
37	508	237	30	149	4	
38	507	52	6	35	1	8 15
39	508	1,007	126	647	18	E
40	509	1,070	134	687	19	5
41	510	227	28	153	4	2

Summary Name Bue 3 2037 Year 2025 Number of links 41 Pollstant Total emission Units CO 40,229 kg/year THC 5,005 kg/year NO, 10,226 kg/year PMm 081 kg/year C 2,750 tomos/year

All links

Link	10.000	Emissions								
number	Link title	CO (kg)year)	THC (kg/year)	NO, (kg/year)	PM _{re} (kg/year)	C (tonnes/year)				
1	138	739	93	212	. 7	3				
2	140	137	17	38	1	2 · · · · ·				
3	144	1,162	144	308	11					
4	148	1,257	155	331	11	1				
5	154	1,113	138	300	10					
6	160	572	71	154	5	5				
1	163	359	44	95	3	8 53				
8	172	5,030	622	1,330	46	23				
9	174	2,286	304	1,004	26	12				
10	176	1,725	229	758	20	10				
11	178	1,017	135	430	12					
12	179	407	54	172	5	1				
13	190	1,494	190	441	15	3				
14	192	394	52 567	139	4	S				
15	194	4,286		1,595	47					
16	195	852	113	342	10					
17	203	4,127	497	2,903	93	34				
18	217	449	59	229	6					
19	244	88	12	36	1	9				
20	340	297	38	171	4					
21	342	193	24	126	_4	8				
22	344	264	33	168	5	3. SI				
23	352	318	40	205	6	X (4				
24	354	400	50	256	7					
25	356	235	30	146	4	1 Di				
26	357	5,417	650	3,835	124	5				
27	358	328	44	132	4	a				
26	374	380	49	226	6	1				
29	380	305	39	186	5					
30	403	12	1	8	0					
31	500	638	80	413	11	() () () () () () () () () ()				
32	501	9	1	5	0					
33	502	214	26	144	4	A				
34	503	356	44	236	7	S. 84				
35	504	285	35	187	5	3				
36	505	553	70	339	9					
37	500	237	30	149	- 4	S				
38	507	52	6	35	1					
39	508	1,259	158	805	22	C (1				
40	509	692	86	445	12					
41	510	290	36	195	6					

urrent ree	ceptor							1					
Receptor Nat	ne	20 Ellisholding P	Road		Receptor nu	mber	10						
Assessment	year	2023											
Results	5				a.			Contrib	ution of e	each link	to annual	mean	1645
		Annual mea	in -		For compariso	n with Air Qual	lity Standards	Link number	00 (ng/m ¹)	Benzene (µg/m²)	1,3-butadiene (µg/m²)	NOx (µg/m²)	PM., (agin
Pollutant					-			1	0.00	0.00	0.00	9.23	0.02
Pontain	Background	Road traffic			ts Metric Value		2	0.00	0.00	0.00	0.45	0,04	
	concentration	component	Total	Units		Metric Value	Units	3	0.02	0.03	0.02	6.07	0.69
	s than schat-re-	12.5-5-7-4-1722-						4	0.00	0.00	0.00	0.06	0.01
co	0.00	0.03	0.03	mg/m ³	Annual mean*	0.03	mg/m ³	6					-
Benzene	0.00	0.03	0.03	and the state of the	Annual mean	0.03	µg/m²	7					
1,3-butadiene	0.00	0.03	0.03		Annual mean	0.03	HB/m ³	8				G	12
NO,	0.0	5.0	6.8	µg/m ²		Not applicable		9					
NO ₂	0.0	2.7	2.7		Annual mean*	2.7	ug/m ²	10				8	61
PM ₁₀			1.122		Annual mean	8.5	ug/m ³	11					
	7.8	0.76	8.51	hðiu,	Days >50µg/m ¹	0	Days	12	2			-	
	•						- 1107 - 1 A	13				-	
					* See Footnote 32 in	DMRB Volume 11 C	Chapter 3	14					
								15					1.1

DMDD. Annound of Local Ale Onelite

OUTDUT OUTFT

	19		co-	Benzene	1,3-butadiene	NO,	NO2*	PM	-
Receptor number	veptor number Name	Year	Annual mean mg/m ³	Annual mean	Annual mean	Annual mean	Annual mean	Annual mean igim ¹	Days >50µg/m
/1		2023	0.16	0.18	0.15	18.47	6.10	11.61	0.00
2		2023	0.01	0.01	0.01	1.37	0.70	8.33	0.00
3		2023	0.02	0.02	0.02	5.42	2.24	9.38	0.00
4	2.0	2023	0.00	0.00	0.00	0.30	0.18	8.19	0.00
5		2023	0.00	0.00	0.00	0.22	0.14	7.37	0.00
6		2023	0.00	0.00	0.00	0.09	0.06	7.76	0.00
7		2023	0.01	0.01	0.00	1.08	0.57	7.84	0.00
		2023	0.01	0.01	0.01	3.01	1.37	80.8	0.00
9	10.00 million (1990)	2023	0.01	0.01	0.01	1.99	0.96	7.94	0.00
10		2023	0.03	0.03	0.03	6.80	2.71	8.51	0.00
								- i	
						-			

s spreadsheet calcula	ates the nitro	ogen dioxide concent	ration from ti	ne modell	ed oxides of nitrogen o	concentration	S		
The input se	lections are show	adsheet has been comple what the head of the Table							
.) Type in (or paste and	copy from anot	her spreadsheet)							
		eceptor ID) and its Eastin	· · · · · · · · · · · · · · · · · · ·	and the second second second					
		on from roads to oxides o	and the second second second second	entrations (Road increment NO _x)				
3) the local		ncentration as NO ₂ (2d.p)							
		natively enter the local back undant background NO, or		nk as annro	nciato				
		lations are faster if you inp	CONTRACTOR DE LA COLORIZA						
. The default set-up is t	o use the fract	tion of oxides emitted as	NO ₂ from the Ge	eneral Input	s spreadsheet				
ave the "Fraction emit	ted as NO2" col	lumn empty to use the de	fault set up.						
		by typing appropriate va	lues (0-1) into 1	his column					
he fNO2 spreadsheet pr	ovides addition	nal values.							
Click the mouse on the	run button to	run the model.				ſ	Run NO, to NO2		
The model		Sector Contractor							
	a) the total nit	rogen dioxide concentration	at the receptor (Total NO ₂)					
	b) the increme	antal contribution to nitroger	dioxide concent	rations from	the road vehicle emissions (i	Road NO ₂)			
Converding	ata ita maulta ta	another spreadsheet.							
Copy and pa	iste the results to	another spreadsneet.					Clear spreadsheet		
i) Click the mouse on the	Clear button 1	to clear the spreadsheet					Ciedi spreadsheet		
and Authority Man	ry Mourne and				Year:	2023			
ocal Authority: New	ry mourne and	DOWN	5	10	Traffic Mix:	All non-urban	UK traffic		
Receptor ID Easting,m	Northing, m	Road Increment NO _x	Background	µg m ⁻³	Fraction emitted as NO ₂	Total N		Notes	
a characterization of the second statement		µg m`°	NOx	NO ₂	A REAL AND A CONTRACTOR ACCOUNTS	µg m`	μg m [*]		
		18,47		5.41		15.3	9.89		
		1.37		3.98		4.75	0.77		
	6 5	5.42	-	4.48		7.47	2.99		
		0.30	The second secon	3.91		4.08	0.17		
		0.22		3.46		3.58	0.12		
		0.05	-	3,46		3.51	0.05		1
		3.01		3.53		5.21	1.68		
		1.96	-	3.53		4.64	1.11		
		6.80		3.53		7.29	3.76		

7.29

3.76

6.80

4.45

3.53

Please Select:										
Base Year	2017 💌		Pollutant	N02 💌		Calculate				
Assessment Year	2023									
Assessment tear	2003									
	Enter Modelle	d Annual Mea	n NO2		and the second se	Long renne		Adjusted Annual Mean NO		
	Concent	trations (µg/m ²)		Modelled 2017 Base Year /	Adjustment Factor		Concentrat	lions (µg/m*)	
Receptor ID	Base Year	Projected Base Year	Do-Minimum	Do-Something	2023 Do- Minimum (Ratio A)	Between 2017 / 2023 (Ratio B)	Gap Factor	Do-Minimum	Do-Somethi	
	17.9	15.3	15.73	13.89	0.85	0.96	1.12	17.6	15.5	
	6.01	4.75	4.78	4.72	0.79	0.96	1.21	5.8	5.7	
	9.03	7.47	7.67	6.96	0.83	0.96	1.16	8.9	8.0	
	5.26	4.08	4.09	4.09	0.78	0.96	1.23	5.0	5.0	
	4.6	3.58	3.59	4.25	0.78	0.96	1.23	4.4	5.2	
	4.53	3.51 4.06	3.52	3.66	0.77	0.96	1.23	4.3	4.5	
	6.34	5.21	4.11	4.53	0.79	0.96	1.16	6.1	7,2	
	5.73	4.64	4.7	7.03	0.81	0.96	1.18	5.6	8.3	
	8.57	7.29	7,41	7.83	0.85	0.96	1.12	8.3	8.8	
	17.9	Constrainty of	15.73	14.24				10000		
	1.445217.00	15.3	-		0.85	0.96	1.12	17.6	15.9	
S	6.01	4.75	4.78	4.75	0.79	0.96	1.21	5.8	5.7	
	9.03	7,47	7.67	6.73	0.83	0.96	1.16	8.9	7.8	
	5.26	4.08	4.09	4.09	0.78	0.96	1.23	5.0	5.0	
	4.6	3.58	3.59	4.13	0.78	0.96	1.23	4.4	5.1	
	4.53	3.51	3.52	3.63	0.77	0.96	1.23	4.3	4.5	
	5.12	4.06	4.11	4.48	0.79	0.96	1.21	5.0	5.4	
	6.34	5.21	5.28	6.08	0.82	0.96	1.16	6.1	7.1	
	5.73	4.64	4.7	6.66	0.81	0.95	1,18	5.6	7,9	
	8.57	7.29	7.41	7.73	0.85	0.96	1.12	8.3	8.7	
	17.9	15.3	15.73	14.61	0.85	0.96	1.12	17.6	16.3	
	6.01	4.75	4,78	4.7	0.79	0.96	1.21	5.8	5.7	
	9.03	4.08	7.67	8.9 4.25	0.78	0.96	1.10	5.0	5.2	
	4.6	3.58	3.59	3.64	0.78	0.96	1.23	4.4	4.5	
	4.53	3.51	3.55	4.4	0.77	0.96	1.23	4.3	5.4	
	5.12	4.06	4.11	4,11	0.79	0.96	1.21	5.0	5.0	
	6.34	5.21	5.28	6.06	0.82	0.96	1.16	6.1	7,1	
	5.73	4.64	4.7	6.79	0.81	0.96	1.18	5.6	8.0	
	8.57	7.29	7.41	7.83	0.85	0.96	1.12	8.3	8.8	
	17.9	15.3	19.73	14.61	0.85	0.96	1.12	17.6	16.3	
	6.01	4.75	4.78	4.7	0.79	0.96	1.21	5.8	5.7	
	9.03	7.47	7.67	8.9	0.83	0.96	1,16	8.9	10.3	
	5.26	4.08	4.09	4.28	0.78	0.96	1.23	5.0	5.3	
	4.6	3.58	3.59	3.9	0.78	0.96	1.23	4.4	4.8	
	4,53	4.06	3.52	4.11	0.79	0.96	1.23	5.0	4.4 5.0	
	6.34	5.21	5.28	6.06	0.82	0.96	1.16	6.1	7.1	
	5.73	4.64	4.7	6.79	0.81	0.96	1.18	5.6	8.0	
	8.57	7.29	7.41	7.83	0.85	0.96	1.12	8.3	8.8	
	17.9	15.3	15.73	14.61	0.85	0.96	1.12	17.6	16.3	
	6.01	4.75	4.78	4.7	0.79	0.96	1,21	5.8	5,7	
	9.03	7.47	7.67	8.9	0.83	0.96	1.16	8.9	10.3	
	5.26	4.08	4.09	4.27	0.78	0.96	1.23	5.0	5.3	
	4.6	3.58	3.59	3.9	0.78	0.96	1.23	4,4	4.8	
	4,53	3.51	3.52	3.59	0.77	0.96	1.23	4.3	4.4	
	5.12	4.06	4.11	4.11	0.79	0.96	1.21	5.0	5.0	
	6.34	5.21 4.64	5.28	6.06	0.82	0.96	1.16	5.6	8.0	
	5.73	7.29	4.7	6.79 7.83	0.81	0.96	1.10	8.3	8.8	

Appendix B Annex D

(http://www.apis.ac.uk/)

(http://www.apis.ac.uk/)

Results (http://www.apis.ac.uk/srcl/results)

<u>SRCL home (http://www.apis.ac.uk/srcl) | SSSI (http://www.apis.ac.uk/srcl/select-a-site?</u> <u>SiteType=SSSI) | Fathom Upper (http://www.apis.ac.uk/srcl/select-a-feature?</u> <u>site=ASSI238&SiteType=SSSI) | Lowland Meadows (http://www.apis.ac.uk/srcl/results?</u> <u>sitecode=ASSI238&sitetype=SSSI&features=GRASNELOUP,PH29</u>)</u>

Site/Feature Information

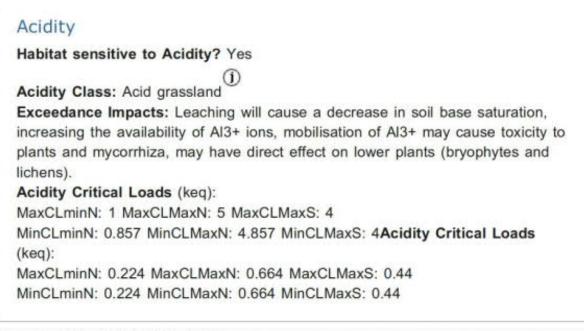
Site Name: Fathom Upper

Interest Name: Lowland Meadows - (Lowland Meadow)

EUNIS Habitat: Critical loads for nitrogen are based on the EUNIS habitat classification. The EUNIS classes corresponding with the BAP habitat you have selected ('Lowland Meadow') are listed in the box below. Therefore please select below the EUNIS class that best fits the particular habitat type at the SSSI you have selected. If you have more detailed habitat classification at your site (e.g. NVC class) you can use the <u>habitat correspondence table</u>

(http://www.jncc.gov.uk/files/NBNdictionary habitat correspondances 20080205.zip) to look up the corresponding EUNIS class. If you do not have this information, then for the purpose of a screening assessment, you are advised to select the first habitat in the list which is the most

sensitive.


You can find out more information on interest feature(s) at your selected A/SSSI by using the country agency websites - <u>NIEA, (http://www.ni-environment.gov.uk/protected_areas_home/new_assi_landing_page.htm) SNH</u> (http://gateway.snh.gov.uk/portal/page? _pageid=53,910284,53_920284&_dad=portal&_schema=PORTAL), Natural England, (http://www.sssi.naturalengland.org.uk/Special/sssi/search.cfm) & CCW (http://www.ccw.gov.uk/interactive-maps/official-maps-search.aspx)

Select a EUNIS Habitat: E2.2: Low and medium altitude hay meadows V

[Note: Habitats in the select menu above may give the same nitrogen and acidity values]

Enter a grid reference >>

mpacts and Critical L	oads Deposition & Critical Load Graphs
Source Attribution	
Nutrient Nitrogen	
Habitat sensitive to N Relevant Nitrogen Cri ①	itrogen? Yes tial Load Class: Low and medium altitude hay meadows
EUNIS ecosystem cla	values? expert judgement
Acidity	
Habitat sensitive to A	cidity? Yes
Exceedance Impacts: increasing the availabil	(j) Leaching will cause a decrease in soil base saturation, ity of Al3+ ions; mobilisation of Al3+ may cause toxicity to may have direct effect on lower plants (bryophytes and
Nutrient Nitrogen	
Habitat sensitive to N Relevant Nitrogen Cri ①	itrogen? Yes tial Load Class: Low and medium altitude hay meadows
EUNIS ecosystem cla	values? expert judgement

Post updated: Wed, 15/03/2017 - 23:03

This page was accessed on Thursday, March 29, 2018 15:23

(http://www.ccw.gov.uk/) (http://www.sepa.org.uk/) (http://www.ceh.ac.uk/)

APIS ©2016 Hosted & Maintained by CEH

- o privacy statement (http://www.apis.ac.uk/privacy-statement)
- terms and conditions (http://www.apis.ac.uk/terms-and-conditions)

	the process of the party of the process of the party of t	100	Local Air Quality Assessment Output				Fattom Upper	STEP 3	1.00	stimute dry deposition of NO, Scalin	a Factor a Justicia	NO. + 01 ke Nite Tore 1		
			Colored and the Real and the Real of	the number		and the second					grante - ippin i	or read - and all restant spece		
atham Opper	adow tor Skins grid separam (data derived from APTS website). eer 2012-2014 (3 year average). This is is 2013 (Bata provided by Centre for is 2013 (Bata provided by Centre for is 2013 class by Nhy class by 2Ns per s for assessment eer 2014 19.5 kg Nhw eer 2015 19.1 kg Nhw eer 2015 19.1 kg Nhw eer 2015 19.1 kg Nhw 19.3 kg Nhw 10.5 kg Nhw 10.	at 200000, 400010	Calculated using the Local Application	OF THE DMPLB S	overland obs	NO,	NO,*		-		-			
ow and Medium Ablude Hay Meadow			Name	Distance	Year	Annual	Acreal			6on of NO ₂ in a transact	Road increme	et in NO, stry deposition	Trav	deposition rate
TEP 1				Contaction of		mean upin	mean ugm?		121 17/8	near the road	10000000000		1.150	Concerning a
	rhad from APRE website/		cSAC(ASS) (Base Year)	- 20	2017	5.26	4.11		0.41	kg Nha"/year*	-0.02	kg Niha 'Yyear'	18.22	kg Niha ¹ iyea
			cSAC/ASSI (Ease Year)	70	2017	5.12	4.03		0.40	kg Niha'i/year'	-0.03	kp N/ha"/year"	18.21	kg Niha''/yea
	and This is		cSAC/ASSI (Base Year)	155	2017	5.07	4.00		0.40	kg Niha "/year"	-0.03	kg N/ha ^r /year ¹	18.31	kg Niha ¹ /yea
taken to be equivalent to those in 2013 (Data provided by		670	cSAC/ASSI (Base Year)	175	2017	5.06	4.00		0.40	kg Niha '/year'	-0.03	kp N/ha "/year"	18.31	kg Niha ¹ /yei
Ecology and Hydrology, Edinburgh).		8.88 kg Nta 'year'	cSAC/ASSI (Base Year)	200	2017	5.06	4.00		0.40	kg Nitos 'Jyear'	-0.03	kg Nite '/year'	18.31	kg N/ta 'lyer
		200 200 200 CT		1 1000	100	1000	12111		The second second	and the second secon	-30	and the second sec		
N Deposition Nates should be reduced by 2% per	seesaing NO, Concentrations & Nitrogen Deposition Rates Iran Grid Ref. 250600, 40 a Bins grid square (data derived from APIS website). 2012-2014 (3 year average). This is 2013 (Data provided by Centre for 2013 (Data provided by Centre for 2015 (Data provided by Centre for 2015 (Data provided by Centre for 2015 (Data provided by Centre for 2016 (Data provided by Centre for 2017 (Data provided by Centre for 2018 (Data provided by Centre for 2020 (Data provided by Centre for 2021 (Data provided by Centre for 2022 (Data provided by Centre for 2023 (Data provided by Centre for 2024 (Data provided by Centre for 2025 (Data provided by Centre for 2026 (Data provided by Centre for 2027 (Data provided by Centre for 2028 (Data provided by Centre for 2029 (Data provided by Centre for 2020 (Data prov					NO,	ND ₂ *		W/ III	Section and the				
year to estimate deposition rates for assessment years			Name	Distance	Year	Areusi	Arread			don of NO ₂ in a transact resist the most	Road increme	ent to NO, dry deposition	Total	deposition rate
220				. Landa		mean pgini	mean µpim ¹					and the second second		and the second
Deposition Rate equivalent to year 2014		19.5 kg Niter Yyear*	cSAC/ASSI-(Do-Min)	20	2023	4.14	3.24		0.32	kg Niha'/year'	-0.02	kg Nihe "ryear"	10.23	kg Niha /yea
Deposition Rate equivalent to year 2015		19.1 kp Nha 'year'	cSAC/ASSI (De-Min)	70	2023	4.00	2.16		0.32	kg Nihar ¹ /year ²	-0.02	kg Niha Vyear	16.22	kg Nite 'lye
Deposition Rate equivalent to year 2016	53	18.7 kg Nitur 'lyeur'	<sac (do-min)<="" assi="" td=""><td>155</td><td>2023</td><td>3,95</td><td>3.13</td><td></td><td>0.35</td><td>kg Niha 'lysar'</td><td>-0.03</td><td>kg N/ha 'ryear.'</td><td>16.22</td><td>kg N/ha ²ye</td></sac>	155	2023	3,95	3.13		0.35	kg Niha 'lysar'	-0.03	kg N/ha 'ryear.'	16.22	kg N/ha ² ye
Deprestion Rate equivalent to year 2017	14	18.3 kg Niha 'iyear'	(SAC/ASSI (Do-Mir))	175	2023	3.95	3.13		0.31	kg Niths "Jyear"	-0.03	kg N/w '/year'	16.22	kg Niha 'iye
Deposition Rate equivalent to year 2018		18.0 kg Niha 'Ywar'	(SAC/ASSI (Do-Mir)	200	2023	3.94	3.13		0.31	kg Niha'/year*	-0.03	kg Nha"/paar"	16.22	kg N/ha /yes
Deposition Rate equivalent to year 2019		ttis kg Niha 'Year'												and the rest of the
Deposition Rate equivalent to year 2020	1.1	17.3 kg Niha 'Year'	1	Vacar and	- Arrista	NO,	NO ₃ *		a second second		for a second second	ALL DATE OF THE OWNER OF THE OWNE		
Deposition Rate equivalent to year 2021		15.9 kg Niha 'iyear'	Narrye	Distance	Year	Annual	Annual			Approx of NO ₃ in a transact mean the road	Road increme	ent to NO ₂ dry deposition	Total	deposition rate
Deposition Rate equivalent to year 2022		to 5 kg Nihar Vyear 1	in the second	a service of		mean applier?	mean µg/m ²			New York (1996)	10000000000			
Dependent Rate equivalent to year 2022		16.2 kg N/ta:"/year"	cSAC/ASSI (Do-Some) RED	-20	2023	7.57	5.15		0.52	kg Niha "/year"	0.18	kg N/to '/year'	16:42	ing Nither Type
			cSAC/ASSI (Do-Some) RED	70	2023	5.00	3.72		0.37	kg Nihar Vyear*	0.03	kg N/ta 'year'	16.28	kg Niha Vyei
Deposition Critical Loads for Hay Meadows (APIS)			cSAC(ASSI (Do-Some) RED	155	2023	4.10	3.22		0.32	kg Niha"/year*	-0.02	kg Nito '/year'	16.23	itig Nifur 'iyes
or and Hadiam Abriada Hay Meadows	20	- 30 kg Nha"/year1	(SACIASSI (Do-Some) RED	175	2023	4.07	3.20		0.32	kg Niha '/year'	-0.02	kg Nha"/year"	16.22	kg Niha 'iyer
			cSACIASSI (Do-Some) RED	200	2025	4.01	3.57		0.32	kg Niha'/year*	-0.02	kg N/har Vyear 1	16.22	kg Niha Tye
					A	Grane -			10	te standa de la	1		_	
	113 (Data provided by Centre for egy, Edinburgh). 2013 10.88 kg N/hz 1by 2% per sensamed 10.85 kg N/hz 14 10.5 kg N/hz 15 10.1 kg N/hz 16 19.1 kg N/hz 18 19.1 kg N/hz 18 19.1 kg N/hz 19 19.1 kg N/hz 10 10.2 kg N/hz 20 10.2 kg N/hz 20 20 - 30 kg N/hz 10.2 kg N/hz 20 - 30 kg N/hz 10 20 - 30 kg N/hz					NO,	NO ₅ *		Dry deposi	Bon of NO. in a transmit	_		-	
			Nerte	Distance	Year	Annual	Aveual			mear the road	Road increme	ent to NO ₂ dry deposition	Total	deposition rate
						mean µgim'	mean µg/m"			NATIONAL CONTRACTOR		a construction of the	_	
			c5AC/ASSI (Do-Sotwi Yellow	- 20	2023	6.93	-4.79		0.48	kg Nitus 'lyear'	0.14	kg Nitus "year"	10.38	kg N/ha /ye
			cSAC(ABS) (Do-Some) Yellow	70	2023	4.81	3.62		0.30	kg Niha'/year'	0.02	kg N/he'/year'	16.27	ing Nither Types
			cSACIASSI (Do-Some) Yellow	155	2023	4.07	3.20		0.32	kg Niha'/year*	-0.02	kg Nha"/year"	16.22	kg Niha 'iye
			cSACIASSI (Do-Some) Yellow	175	2023	4.05	3.19		0.32	kg Niha"/ywar"	-0.02	kg N/ha '/year'	16.22	kg Niha "ye
			cSACIASSI (Do-Some) Yellow	200	2023	4.00	3.18		0.32	kg Niha'/year'	-0.02	kg Nha 'year'	16.22	itg Niha 'ye
TEP 2 Obtain background NO, and NO, Concentrator	to lucino same method as local a	(instance)												
								Obtain the	average NO	concentration for 5km grid squar				
the second se	_									and the second second second provide the second	306			
	LAND THE STORE A	11411111111111111						Joss or val	in the second of the	multiplity CEPTUL watering				
									0.43	kg Niha ¹ lyear ¹ (2017)				
									4.28	ugim ¹ (2017)				
									0.34	kg N/ha ⁽)year ⁻¹ (2023)				
Not Adjusted) 2023 value = 3.13 Ustra"	to the start of the Start	CO unanaliza alubant							3.4	ug/m ² (2023)				
IO, Critical level - 30.00 up/m*	"adjusted after DM	Hds screening sisheet								higher, freezal				
AV Provension														

urrent ree	ceptor				Annual mean 0.00 Annual mean 0.00 Not applicable Annual mean 0.0 Annual mean 0.0 Days >60pg/m ² 0								
Receptor Nat	_	Base 2017 200	m (Receptor nu	mber	5	e e					
Assessment	year	2017				15							
Results								Contribu	tion of e	ach link	to annual i	mean	
		Annual mea	in -		For compariso	n with Air Qual	ity Standards	Link number Ct	D (mg/m ¹)	Benzene (µg/m²)	1,3-butadiene (µgim ²)	NOx (µg/m²)	PM ₁₀ (µg/m
Pollutant	Background concentration	Road traffic component	Total	Units	Metric	Value	Units	1 2 3 4	6.00	0.00	0.00	0.00	0.00
co	0.00	0.90	0.00	mg/m ³	Annual mean*	0.00	mg/m ³	6					
Benzene	0.00	0.00	0.00	µg/m ³	Annual mean	0.00	µg/m²	7					1
1,3-butadiene	0.00	0.00	0.00	µg/m ³	Annual mean	0.00	HB/m ³	8				<u>6</u>	22
NO,	5.1	0.0	5.1	µg/m ²		Not applicable		9					
NO ₂	0.0	0.0	0.0	µg/m ³	Annual mean*	0.0	µg/m ²	10	- 23			(ç.
PM ₁₀	0.0	0.00	0.00	µg/m ¹	Annual mean	Not applicable nual mean* 0.0 nual mean 0.0	h0µm3	11					
	4.4	0.00	0.00	hður.	Days >50µg/m ³	0	Days	12					8
						ays >50µg/m² Days		13				_	
					Days >50pg/m ⁴ D Days * See Footnote 32 in DMRB Volume 11 Chapter 3	hapter 3	14					-	

All rece	ptors				Po	llutant conce	entrations a	t receptor		
	19			co.	Benzene	1,3-butadiene	NO,	NO2*	PM	10
Receptor number	N	lame	Year	Annual mean ing/m ³	Annual mean µg/m ¹	Annual mean µg/m ³	Annual mean ug/m ³	Annual mean	Annual mean ugim ¹	Days ≻50µg/m
1	Base 2017 20m		2017	0.00	0.00	0.00	5.26	0.08	0.02	0.00
2	Base 2017 70m		2017	0.00	0.00	0.00	5.12	0.02	0.00	0.00
3	Base 2017 155m		2017	0.00	0.00	0.00	5.07	0.00	0.00	0.00
4	Base 2017 175m		2017	0.00	0.00	0.00	5.06	0.00	0.00	0.00
5	Base 2017 200m		2017	0.00	0.00	0.00	5.06	0.00	0.00	0.00
			-							
5									- X	
							-			
				-			-			
			-				-			
									5	
				-				-		
			-	-	-				· · · · · · · · · · · · · · · · · · ·	
							1			
				9				2- P		

* See Footnote 32 in DMRB Volume 11 Chapter 3

MKB:	Assessm	ent of	Loca	I All	Metric Value Annual mean* 0.00 Annual mean* 0.00 Annual mean 0.00 Annual mean 0.00 Annual mean* 0.00 Annual mean* 0.0 Annual mean* 0.0 Annual mean* 0.0 Days >50µg/m* 0				0011	PUT SH	IEEI		
urrent ree	ceptor												
Receptor Nat	me	Yellow 200			Receptor nu	mber	15						
Assessment	year	2023			Receptor number For comparison with Air Qual Metric Value Annual mean* 0.00 Annual mean* 0.0 Annual mean* 0.0 Annual mean* 0.0 Days >60µµm* 0								
Results					For comparison with Air Quality 3 Metric Value Annual mean* 0.00 Annual mean 0.00 Annual mean 0.00 Annual mean 0.0 Annual mean 0.0 Annual mean 0.0 Days >00ugin* 0		Contr	ibution of	each link	to annual	mean	100	
		Annual mea	in		For compariso	n with Air Qua	lity Standards	Link numbe	CO (ngim ¹)	Benzene (µg/m²)	1,3-butadiene (µg/m²)	NOx (µg/m²)	PM ₁₁ (ugh
Pollutant					Receptor number For comparison with Air Quality is Metric Value m ² Annual mean 0.00 n ³ Annual mean 0.00 n ⁴ Annual mean 0.00 n ⁵ Not applicable Not applicable n ⁴ Annual mean 0.00		1	0.00	0.00	0.00	0.00	0.00	
Formatin	Reckground	Read traffic					2	0.00	0.00	0.00	0.06	0.01	
	concentration	component	Total	Units		Units	3			+ +		-	
								5				6	
co	0.00	0.90	0.00	mg/m ³	Annual mean*	0.00	mg/m ³	6				_	
Benzene	0.00	0.00	0.00	µg/m ³	Annual mean	0.00	µg/m²	7				2	1
1,3-butadiene	0.00	0.00	0.00	µg/m ³	Annual mean	0.00	hðjuu ₃	8	3		· · · · · · · · · · · · · · · · · · ·	<u> </u>	22
NO,	3.9	0.1	4.0	µg/m ²		Not applicable		9					
NO ₂	0.0	0.0	0.0	µg/m ³	Annual mean*	0.0	ug/m ²	10	1				č1
PM ₁₀			1		Annual mean	0.0	µg/m ³	11					
	0.0	0.01	0.01	hðu,	Days >50µg/m ¹	0	Days	12	2			-	25
							and the second second	13	2			-	1
					See Footnote 32 in	DMRB Volume 11	Chapter 3	14					
								15	1				1.1

Annual mean mg/m jg/m1		eptors			Po	llutant conce	entrations a	t receptor		
Annual mean mg/m jgjm1	1	9		co-	Benzene	1,3-butadiene	NO,	NO2*	PM	10
2 Do MrvBlas 2023 0.00 0.00 0.00 4.00 0.03 0.00 0.00 3 Do MrvBlas 2023 0.00 0.00 0.00 3.85 0.00 0.00 0.00 4 Do MrvBlas 2023 0.00 0.00 0.00 3.85 0.00 0.00 0.00 5 Do MrvBlas 2023 0.00 0.00 0.00 3.85 0.00 0.00 0.00 5 Do MrvBlas 2023 0.00 0.00 0.00 3.85 0.00 0.00 0.00 6 Bad 2D 2023 0.01 0.01 7.57 1.42 0.35 0.00 6 Bad 2D 2023 0.00 0.00 0.00 4.10 0.07 0.02 0.00 9 Red 175 2023 0.00 0.00 0.00 4.01 0.03 0.01 0.01 10 Field 2D 2023 0.00 0.00 0.00 <th>ceptor number</th> <th>Name</th> <th>Year</th> <th>Annual mean mg/m³</th> <th></th> <th></th> <th>and the second se</th> <th></th> <th></th> <th>Days ≻50µg/m</th>	ceptor number	Name	Year	Annual mean mg/m ³			and the second se			Days ≻50µg/m
3 Do Minvillian 2023 0.00 0.00 0.00 2.85 0.00 0.00 0.00 4 Do Minvillian 2023 0.00 0.00 0.00 0.00 3.85 0.00 0.00 0.00 5 Do Minvillian 2023 0.00 0.00 0.00 3.86 0.00 0.00 0.00 6 Bied 20 2023 0.00 0.00 0.00 3.86 0.00 0.00 0.00 7 Red 70 2023 0.00 0.00 0.00 5.00 0.44 0.10 0.00 8 Red 75 2023 0.00 0.00 0.00 4.00 0.02 0.00 9 Red 175 2023 0.00 0.00 6.00 4.01 0.07 0.02 0.00 9 Red 175 2023 0.00 0.00 0.00 4.01 0.07 0.02 0.00 10 Red 200 2023 0.00 0.00 </td <td>1</td> <td>Do MirvBlue</td> <td>2023</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>4.14</td> <td>0.00</td> <td>0.02</td> <td>0.00</td>	1	Do MirvBlue	2023	0.00	0.00	0.00	4.14	0.00	0.02	0.00
4 Do MinvBlue 2023 0.00 0.00 0.00 3.85 0.00 0.00 0.00 5 Do MinvBlue 2023 0.00 0.00 0.00 0.00 3.85 0.00 0.00 0.00 6 Red 20 2023 0.01 0.01 0.01 7.87 1.42 0.85 0.00 7 Red 70 2023 0.05 0.00 0.00 6.00 5.00 0.44 6.10 0.00 8 Red 155 2023 0.00 0.00 0.00 4.01 0.07 0.02 0.00 9 Red 177 2023 0.00 0.00 0.00 4.01 0.07 0.02 0.0 9 Red 177 2023 0.00 0.00 0.00 4.01 0.07 0.02 0.0 10 Red 250 2023 0.051 0.00 0.00 4.01 0.093 0.01 0.01 0.03 0.01 0.01 0.03	2	Do Mir/Blue	2023	0.00	0.00	0.00	4.00	0.03	0.00	0.00
5 Do MivBlue 2023 0.00 0.00 0.00 3.94 0.00 0.00 0.00 6 Red 20 2023 0.01 0.01 0.01 7.87 1.42 0.36 0.00 7 Fled 70 2023 0.01 0.00 0.00 0.00 5.50 0.44 0.10 0.01 8 Fled 75 2023 0.00 0.00 0.00 4.10 0.07 0.02 0.0 9 Fled 175 2023 0.00 0.00 0.00 4.07 0.06 0.01 0.03 0.01 0.02 0.0 9 Fled 175 2023 0.00 0.00 0.00 4.07 0.06 0.01 0.03 0.01 0.0 10 Fled 200 2023 0.00 0.00 0.00 4.01 0.03 0.01 0.03 11 Yelics 20 2023 0.00 0.00 0.00 4.01 0.37 0.08 0.0	3	Do Mir/Blue	2023	0.00	0.00	0.00	3.95	0.00	0.00	0.00
6 Red 20 2023 0.01 0.01 0.01 7.57 1.42 0.35 0 7 Red 70 2023 0.00 0.00 0.00 5.00 0.44 0.10 0 8 Red 155 2023 0.00 0.00 0.00 5.00 0.44 0.10 0 9 Red 175 2023 0.00 0.00 0.00 4.10 0.07 0.02 0 9 Red 175 2023 0.00 0.00 0.00 4.01 0.07 0.02 0 10 Red 200 2023 0.00 0.00 0.00 4.01 0.03 0.01 0 11 Yelice 20 2023 0.01 0.01 6.93 1.19 0.28 0 12 Yelice 70 2023 0.00 0.00 4.01 0.97 0.66 0.01 13 Yelice 75 2023 0.00 0.00 0.00 4.07 0.66	4	Do Min/Blue	2023	0.00	0.00	0.00	3.95	0.00	0.00	0.00
7 Paird 70 2023 0.00 0.00 0.00 5.00 0.44 0.10 0 8 Paird 155 2023 0.00 0.00 0.00 4.10 0.07 0.02 0 9 Paird 175 2023 0.00 0.00 0.00 4.10 0.07 0.02 0 9 Paird 175 2023 0.00 0.00 0.00 4.07 0.06 0.01 0 10 Field 200 2023 0.01 0.01 0.00 4.01 0.03 0.01 0 11 Yellow 20 2023 0.01 0.01 0.01 6.50 1.19 0.28 0 12 Yellow 70 2023 0.05 0.00 0.00 4.81 0.37 0.68 0 13 Yellow 173 2023 0.00 0.00 0.00 4.81 0.37 0.68 0 14 Yellow 173 2023 0.00 0.00 0	5	Do MiryBue	2023	0.00	0.00	0.00	3.94	0.00	0.00	0.00
7 Red 70 2023 0.00 0.00 0.00 5.00 0.44 0.10 0 8 Red 155 2023 0.00 0.00 0.00 4.10 0.07 0.02 0 9 Red 175 2023 0.00 0.00 0.00 4.10 0.07 0.02 0 10 Red 250 2023 0.00 0.00 0.00 4.01 0.07 0.02 0 11 Yelice 20 2023 0.00 0.00 0.00 4.01 0.03 0.01 0 12 Yelice 70 2023 0.00 0.00 0.00 4.01 0.37 0.08 0 13 Yelice 70 2023 0.00 0.00 0.00 4.07 0.06 0.01 13 Yelice 75 2023 0.00 0.00 0.00 4.07 0.06 0.01 0 14 Yelice 173 2023 0.05 0.06 0.01 0	6	Red 20	2023	0.01	0.01	0.01	7.57	1.42	0.35	0.00
9 Red 175 2023 0.06 0.06 0.06 4.07 0.06 0.01 0 10 Red 200 2023 0.00 0.00 0.00 4.01 0.03 0.01 0 11 Yelces 20 2023 0.01 0.01 0.01 6.03 1.19 0.28 0 12 Yelces 70 2023 0.00 0.00 0.00 4.01 0.37 0.08 0 13 Yelces 750 2023 0.00 0.00 0.00 4.07 0.08 0.01 0 14 Yelces 173 2023 0.00 0.00 0.00 4.07 0.06 0.01 0		Flad 70	2023	0.00	0.00	0.00	5.00	0.44	0.10	0.00
10 Red 200 2023 0.00 0.00 4.01 0.03 0.01 11 Yelces 20 2023 0.01 0.01 0.01 6.53 1.19 0.28 0 12 Yelces 70 2023 0.00 0.00 0.00 4.81 0.57 0.68 0 13 Yelces 70 2023 0.00 0.00 0.00 4.81 0.57 0.68 0 14 Yelces 155 2023 0.00 0.00 6.00 4.07 0.06 0.01 0	.8	Red 150	2023	0.00	0.00	0.00	4.10	0.07	0.02	0.00
11 Yelce 20 2023 0.01 0.01 0.01 6.93 1.19 0.28 0 12 Yelce 70 2023 0.00 0.00 0.00 4.81 0.37 0.08 0 13 Yelce 155 2023 0.06 0.00 0.00 4.07 0.08 0.01 0 14 Yelce 173 2023 0.00 0.00 0.00 4.05 0.05 0.01 0	9	Red 175	2023	0.00	0.00	0.00	4.07	0.06	0.01	0.00
12 Yelcar 70 2023 0.00 0.00 0.00 4.81 0.37 0.08 0 13 Yelcar 155 2023 0.00 0.00 0.00 4.01 0.06 0.01 0 14 Yelcar 175 2023 0.00 0.00 0.00 4.05 0.05 0.01 0	10	Fled 200	2023	0.00	0.00	0.00	4.01	0.03	0.01	0.00
13 Yellow 155 2023 0.06 0.06 0.00 4.07 0.06 0.01 0 14 Yellow 175 2023 0.00 0.00 0.00 4.05 0.05 0.01 0	11	Yelce 20	2023	0.01	0.01	0.01	6.93	1,19	0.28	0.00
14 Yellow 173 2023 0.00 0.00 0.00 4.05 0.05 0.01 0	12	Yellow 70	2023	0.00	0.00	0.00	4.81	0.37	0.08	0.00
	13	Yelow 155	2023	0.00	0.00	0.00	4.07	0.06	0.01	0.00
	14	Yelow 175	2023	0.00	0.00	0.00	4.05	0.05	0.01	0.00
15 Yellow 200 2023 0.00 0.00 0.00 0.00 0.01 0.01 0	15	Yellow 200	2023	0.00	0.00	0.00	4.00	0.03	0.01	0.00

* See Footnote 32 in DMRB Volume 11 Chapter 3

	MRB:	Assessm	ent of	Loca	l Air	For comparison with Air Qual Metric Value Annual mean* 0.00 Annual mean 0.00 Annual mean 0.00 Annual mean 0.0 Annual mean 0.0			1	OUTI	PUT SH	IEET	ē	
Assessment year 2023 Results Pollutant Annual mean For comparison with Air Quality Standards Contribution of ouch link to annual mean MOx (µgim) MOx (µgim) MOx (µgim) MOx (µgim) MOx (µgim) PM: (µgim) PM: (µgim) MOx (µgim) PM: (µgim) PM: (µgim) PM: (µgim) MOx (µgim) PM: (µgim) PM: (µgim) MOx (µgim) PM: (µgim) PM: (µgim) PM: (µgim) PM: (µgim) MOx (µgim) PM: (µgim) PM: (µgim) </th <th>Current re</th> <th>ceptor</th> <th>E.</th> <th></th>	Current re	ceptor	E.											
Contribution of each link to annual mean Benzene One of the process of the proces of the process of the process of the process of the	Receptor Na	me	Fathorn Yellow	6		Receptor nu	mber	20	6					
Annual mean For comparison with Air Quality Standards Link meter CO (mglm) Benzene (µglm) 1.3-butation (µglm) MOx (µglm) MOx MOx (µglm) MOx	Assessment	year	2023			5.0- -								
Pollutant Annual mean For comparison with Air Quality Standards Link mether Co (mgin) (µgin) <	Results								Contri	bution of	each link	to annual	mean	
Pollutant concentration Read traffic component Total Units Metric Value Units 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 CO 0.00 0.00 0.00 mg/m² Annual mean 0.00			Annual mea	in		For compariso	n with Air Qual	ity Standards	Link number	CD (mg/m ¹)		CARGO CONTRACTOR		PM., (agin
Background concentration Read traffic component Total Units Metric Value Units 2 0.00 0.	Particular I		Fattom Yellow Receptor number 2023 For comparison with A Annual mean For comparison with A round Road traffic component Total Units Metric Va 0.00 0.00 0.00 mg/m³ Annual mean 0.00 0.00 0.00 0.00 µg/m³ Annual mean 0.01 app 0.00 0.01 0.01 0.01 µg/m³ Annual mean	1		1	0.00	0.00	0.00	0.00	0.00			
concentration component Total Units Metric Value Units 3 1	Pollutant	Beckersen				2	0.00	0.00	0.00	0.06	0.01			
CO 0.00 0.00 mg/m ² Annual mean 0.00 mg/m ² 6		and the second se		Total Units Metric	Value	Units								
CO 0.00 0.00 mg/m ² Annual mean* 0.00 mg/m ² 6 </td <td></td> <td>S MANAGAMANA</td> <td>121002000000</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>-</td>		S MANAGAMANA	121002000000							-				-
1.3-butadiene 0.00 0.00 μg/m³ Annual mean 0.00 μg/m³ 8 NO _a 0.00 0.1 0.1 μg/m³ Not applicable 9	co	0.00	0.90	0.00	mg/m ³	Annual mean*	0.00	mg/m ³	6	1				
NO _a 0.0 0.1 μg/m ² Not applicable 9 9 0 0 10 NO _b 0.0 0.0 μg/m ² Annual mean* 0.0 μg/m ² 10 0 0 0 PM ₁₀ 0.0 0.0 μg/m ² Annual mean* 0.0 μg/m ² 11 0 0 0 PM ₁₀ 0.0 0.0 μg/m ² 0.0 0.0 μg/m ² 11 0 <td< td=""><td>Benzene</td><td>0.00</td><td>0.00</td><td>0.00</td><td>µg/m³</td><td>Annual mean</td><td>0.00</td><td>µg/m²</td><td>7</td><td>(</td><td></td><td></td><td></td><td><u>.</u></td></td<>	Benzene	0.00	0.00	0.00	µg/m ³	Annual mean	0.00	µg/m²	7	(<u>.</u>
NO ₂ 0.0 0.0 μg/m ² Annual mean* 0.0 μg/m ² 10 0 0 0 0 0 μg/m ² 10 0 <td>1,3-butadiene</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>µg/m³</td> <td>Annual mean</td> <td>0.00</td> <td>µg/m³</td> <td>8</td> <td></td> <td></td> <td></td> <td>3</td> <td>22</td>	1,3-butadiene	0.00	0.00	0.00	µg/m ³	Annual mean	0.00	µg/m ³	8				3	22
PM: 0.0 0.01 μg/m ³ Annual mean 0.0 μg/m ³ 11 0.0 0.01 0.01 μg/m ³ 0 Days 12	NO,	0.0	0.1	0,1	µg/m ²		Not applicable		9					
0.0 0.01 0.01 µg/m ² Days >60µg/m ² D Days 12 13 13	NO ₂	0.0	0.0	0.0	µg/m ³	Annual mean*	0.0	µg/m ³	10	1			2	ê)
Days > 50µg/m² 0 Days 12 13	PM ₁₀					Annual mean	0.0		11					
		0.0	0.01	0.01	hðuu.	Days >50µg/m ¹	D	Days	12	2				2
								12.1.1.1		2			-	

15

All rece	ptors				Po	llutant conce	entrations a	t receptor		
		9		co*	Benzene	1,3-butadiene	NO,	NO2*	PM	10
Receptor number		Name	Year	Annual mean mg/m ³	Annual mean µgim ¹	Annual mean µg/m ³	Annual mean ug/m ³	Annual mean µg/m ³	Annual mean Igim ¹	Days ≻50µg/m
11	Fathom 20 (Base	0	2017	0.00	0.00	0.00	0.20	0.13	0.02	0.00
2	Fathom 70 (Base	0	2017	0.00	0.00	0.00	0.06	0.04	0.00	0.00
3	Fathorn 155 (Bee	e)	2017	0.00	0.00	0.00	0.01	0.01	0.00	0.00
4	Fathorn 175 (Bas	#)	2017	0.00	0.00	0.00	0.01	0.01	0.00	0.00
5	Fathom 200 (Bas	e)	2017	0.00	0.00	0.00	0.00	0.00	0.00	0.00
6	Fathorn 20 (Min/I	lum)	2023	0.00	0.00	0.00	0,20	0.13	0.02	0.00
7	Fathorn 70 (Min)		2023	0.00	0.00	0.00	0.06	0.04	0.00	0.00
8	Fathorn 155 (Min)	2023	0.00	0.00	0.00	0.01	0.01	0.00	0.00
9	Fathom 175 (Min)	2023	0.00	0.00	0.00	0.01	0.01	0.00	0.00
10	Fathom 200 (Min)	2023	0.00	0.00	0.00	0.00	0.00	0.00	0.00
11	Fathorn Red 20m		2023	0.01	0.01	0.01	3.63	1,60	0.35	0.00
12	Fathom Red 70m		2023	0.00	0.00	0.00	1.06	0.56	0.10	0.00
13	Fathorn Red 155		2023	0.00	0.00	0.00	0.16	0.10	0.02	0.00
14	Fathom Red 175		2023	0.00	0.00	0.00	0.13	0.09	0.01	0.00
15	Fathom Red 200	n	2023	0.00	0.00	0.00	0.07	0.05	0.01	0.00
16	Fathorn Yellow 2	Dim	2023	0.01	0.01	0.01	2.99	1.36	0.28	0.00
17	Fathom Yellow 7	Den	2023	0.00	0.00	0.00	0.87	0.47	0.08	0.00
18	Fathorn Yellow 1	55m	2023	0.00	0.00	0.00	0.13	0.09	0.01	0.00
19	Fathorn Yellow 1	75m	2023	0.00	0.00	0.00	0,11	0.07	0.01	0.00
20	Fathorn Yellow 2	00m	2023	0.000242506	0.000245954	0.000210437	0.060854002	0.043856912	0.005793566	0

* See Footnote 32 in DMRB Volume 11 Chapter 3

						•	ncentrations			
1). Confirm (idsheet has been complet							
			what the head of the Table t	selow.						
2.) Type In (c	or paste and c	opy from anoth	her spreadsheet)							
	1) the recept	or identifier (R	eceptor ID) and its Eastin	g and Northing	g. [Optional]					
	2) the mode	lled contributio	on from roads to oxides of	nitrogen con	centrations (I	Road increment NO _x)				
	3) the local b	ackground con	ncentration as NO2 (2d.p)							
	Leave the redunda Note that calculation default set-up is to use the fraction of the "Fraction emitted as NO ₂ " column or, you can overwrite the defaults by t 22 spreadsheet provides additional vi- the mouse on the run button to run the The model will calculate: a) the total nitrogen		atively enter the local backs	ground as Nox						
		Leave the red	undant background NO _x or !	NO2 columns bl	ank as approp	oriate				
		Note that calcu	lations are faster if you inp	ut background I	NO, rather tha	n background NO2				
and the second se	Contraction of the second			and the second se	ieneral Input	s spreadsheet				
However, yo	ou can overwri	te the defaults	by typing appropriate val		this column.					
4) Click the r			un the model.				Run NO _s 1	o NO ₂		
			rogen dioxide concentration	at the receptor	(Total NO-)					
		b) the increme		CALL CONTRACTOR	CONTRACTOR OF THE PARTY OF	the road vehicle emissions (Ro	ad NO ₂)			
5) Click the r	and the second	ite the results to	ental contribution to nitrogen	CALL CONTRACTOR	CONTRACTOR OF THE PARTY OF	the road vehicle emissions (Ro	ed NO ₂)	eadsheet		
5) Click the r Local Author	mouse on the	ite the results to	ental contribution to nitrogen another spreadsheet. o clear the spreadsheet	CALL CONTRACTOR	CONTRACTOR OF THE PARTY OF	Year:]]
Local Author	mouse on the	ite the results to Clear button t y Mourne and I	ental contribution to nitrogen another spreadsheet. In clear the spreadsheet Down	CALL CONTRACTOR	CONTRACTOR OF THE PARTY OF	Year:	Clear spr 2017]	Notes]
Local Author	mouse on the rity: Newr	ite the results to Clear button t y Mourne and I	ental contribution to nitrogen another spreadsheet. In clear the spreadsheet Down	dioxide concer	itrations from	Year: Traffic Mix: A	Clear spr 2017 Jl non-urban UK traffic		Notes]
Local Author	mouse on the rity: Newr Easting,m	ite the results to Clear button t y Mourne and I	ental contribution to nitrogen o another spreadsheet. o clear the spreadsheet Down Road increment NO _x	dioxide concer Background NO ₃	μg m ⁻³ NO ₂	Year: Traffic Mix: A	2017 Il non-urban UK traffic Total NO2	Road NO2	Notes	
Local Author Receptor ID	mouse on the rity: Newr Easting,m (Base)	ite the results to Clear button t y Mourne and I	ental contribution to nitrogen e another spreadsheet. to clear the spreadsheet Down Road increment NO _x µg m ⁻⁴	Background NO _x 5.05724444	μg m ⁻³ NO ₂ 3.99293333	Year: Traffic Mix: A	Clear spr 2017 Il non-urban UK traffic Total NO ₂ µg m ⁻²	Road NO ₂ µg m ⁻¹	Notes	
Receptor ID Fathom 20 Fathom 70 Fathom 155	mouse on the rity: Newr Easting,m (Base) (Base) 5 (Base)	ite the results to Clear button t y Mourne and I	ental contribution to nitrogen e another spreadsheet. to clear the spreadsheet Down Road increment NO _x µg m ⁻² 0.20	Background NO ₈ 5.05724444 5.05724444	µg m ⁻³ NO ₂ 3.99293333 3.99293333 3.99293333	Year: Traffic Mix: A	Clear spr 2017 Ul non-urban UK traffic Total NO ₂ µg m ⁻¹ 4.11	Road NO ₂ µg m ⁻¹ 0.11	Notes	
Receptor ID Fathorn 20 Fathorn 70	mouse on the rity: Newr Easting,m (Base) (Base) 5 (Base)	ite the results to Clear button t y Mourne and I	ental contribution to nitrogen another spreadsheet. to clear the spreadsheet Down Road increment NO _x µg m ⁻¹ 0.20 0.06 0.01 0.01 0.01	Background NO _x 5.05724444 5.05724444	µg m ⁻³ NO ₂ 3.99293333 3.99293333 3.99293333 3.99293333	Year: Traffic Mix: A	Clear spr 2017 Il non-urban UK traffic Total NO ₂ µg m ⁻³ 4.11 4.03	Road NO ₂ µg m ⁻¹ 0.11 0.03	Notes	

1). Confirm that the General inputs spreadsheet has been completed The input selections are shown at the head of the Table below.		
2.) Type In (or paste and copy from another spreadsheet)		
1) the receptor identifier (Receptor ID) and its Easting and Northing. [Optional]		
2) the modelled contribution from roads to oxides of nitrogen concentrations (Road increment NO.)		
3) the local background concentration as NO ₂ (2d.p)		
You may atternatively enter the local background as Nox		
Leave the redundant background NO ₂ or NO ₂ columns blank as appropriate		
Note that calculations are faster if you input background NO, rather than background NO2		
3). The default set-up is to use the fraction of oxides emitted as NO2 from the General inputs spreadsheet		
Leave the "Fraction emitted as NO2" column empty to use the default set up.		
However, you can overwrite the defaults by typing appropriate values (0-1) into this column.		
The fNO2 spreadsheet provides additional values.		
4) Click the mouse on the run button to run the model.	Run NO, to NO	
The state with the state in the state in the state in the state.		

The model will calculate:

a) the total nitrogen dioxide concentration at the receptor (Total NO2)

This spreadsheet calculates the nitrogen dioxide concentration from the modelled oxides of nitrogen concentrations

b) the incremental contribution to nitrogen dioxide concentrations from the road vehicle emissions (Road NO2)

Copy and paste the results to another spreadsheet.

5) Click the mouse on the Clear button to clear the spreadsheet

ocal Author	ity: Newr	y Mourne and C	lown			Year: Traffic Mix: All	2023 other urban UK traffi	c	
Receptor ID	Easting,m	Northing, m	Road Increment NO _x	Background	µg m ⁻³	Fraction emitted as NO ₂	Total NO ₂	Road NO ₂	Notes
		1. 1	µg m ⁻³	NOx	NO ₂		µg m ⁻³	μg m ⁻³	
Fathom 20 (Min/Blues)		0.20	3.937	3.129		3.24	0.11	
Fathom 70 (Min)		0.06	3.937	3.129		3.16	0.03	
Fathom 155	(Min)		0.01	3.937	3.129		3.13	0	
Fathom 175	(Min)	-	0.01	3.937	3.129		3,13	0	
Fathom 200	(Min)	1	0.00	3.937	3.129		3.13	0	
Fathom Red	20m		3.63	3.937	3.129		5.15	2.02	
Fathom Red	70m		1.06	3.937	3.129		3.72	0.59	
Fathom Red	155m	1	0.16	3.937	3.129		3.22	0.09	
Fathom Red	175m		0.13	3.937	3.129		3.2	0.07	
Fathom Red	200m		0.07	3.937	3.129		3.17	0.04	
Fathom Yell	ow 20m		2.99	3.937	3.129		4.79	1.67	
Fathom Yell	ow 70m	1	0.87	3.937	3.129		3.62	0.49	
Fathom Yell	ow 155m		0.13	3.937	3.129		3.2	0.07	
Fathom Yell	ow 175m	1	0.11	3.937	3.129		3.19	0.06	
Fathom Yell	ow 200m	2	0.060854002	3.937	3.129		3.16	0.03	

Clear spreadsheet

Appendix C Cultural Heritage

Appendix C Annex A

GAZETTEER OF HERITAGE ASSETS

- Y = Within 300m route option initial assessment of potential impact.
- S = Within 1km of route option initial assessment of potential setting impact.
- N = No initial assessment of potential physical or setting impact.

SMR No.	Description	Long description	Туре	Date	Grid Ref	Townland					
							Blue 1	Blue 2	Blue 3	Red	Yellow
DOW 046:500 & ARM 029:500	Newry Canal Reach 1A	NEWRY CANAL (Co. Armagh) This number covers the portion of Newry Canal in Co. Armagh - c.f. DOW 046:500 for the portion in Co. Down. The Canal is an IHR site [IHR 172], given an SMR no. as part of the scheduling process. NEWRY CANAL (Co. Down) This number covers the portion of Newry canal that is in Co. Down - ARM 029:500 covers the portion in Armagh. This is an IHR site which has been given an SMR no. as part of the scheduling process. An archaeological evaluation was carried out on works situated at the former entrance to a canal basin on the Newry Canal. The area was covered with modern overburden up to 1.7m deep immediately overlying subsoil. Once this was cleared, it was obvious that the majority of the entrance to the canal basin had been removed previously, Only a small portion of the basal course remained [ADS, 2006].	Scheduled	Modern, c18th/c19th	J0962223407	Various	Y	Y	Y	¥	Y
HB16/11/019A	Narrow Water Castle	1820 - 1839 Narrow Water Castle, Newry Road, Warrenpoint, Co Down BT34 3LE. This imposing mid 19 th C Tudor Revival-style mansion (designed by Thomas Duff of Newry, 1830s), is set within an attractive informally landscaped demesne. It retains all of its original external character, and the splendid internal detailing	Listed A	Modern, 19th century	J1234 1971	Narrow Water	N	N	N	N	N

SMR No.	Description	Long description	Туре	Date	Grid Ref	Townland					
							Blue 1	Blue 2	Blue 3	Red	
		survives intact. Along with the servant's accommodation (HB16/11/019B), Gardener's House and walled garden (HB16/11/020), Stable yard (HB16/11/021), ice house (HB16/11/043), Steward's House (HB16/11/044) old farmyard (HB16/11/045) and gate screen (HB16/11/018), it forms an important and substantial group of buildings.									
HB16/29/017A	Church	1900 - 1919 Church of the Sacred Heart (RC) Adj. to 134 Dublin Road, Newry, Co Down. An important basilica plan 20th century church in a Hiberno- Romanesque style, an architectural landmark set on a prominent elevated site. High quality contemporary interior, with fine detailing, relatively unaltered.	Listed B+	Modern, 20th century	J0820 2390	Drumalane	ŝ	S	S	63	
HB16/11/019B	Former Servant's Accommodat- ion to Narrow Water Castle	1700 - 1719 Former Servant's Accommodation to Narrow Water Castle Warrenpoint Road, Newry, Co Down, BT34 2PN. This building was known as Mount Hall and is believed to have been erected by Francis Hall in 1707. It was the main house prior to the erection of Narrow Water Castle, built by Roger Hall in 1835 to designs by Thomas Duff. Duff re- modelled the exterior of Mount Hall to complement the new house. Internally it was converted to servants' accommodation. This, the earliest building on the site, re-modelled in the 19th C in the Tudor style, is both of historical and architectural interest.	Listed B1	Modern, early 18th century	J1233 1974	Narrow Water	N	N	N	2	1
HB16/13/005	Fathom House	1720 - 1739 Fathom House, 45 Fathom Line, Fathom Park, Newry, Co Armagh, BT35 8QN. A well-proportioned, early 18thC symmetrical house, occupying a magnificent maturely planted site overlooking the Newry River/ canal. The interior is believed to be little altered, retaining most of the original features. Along with its	Listed B1	Modern, 18th century	J0967 2302	Fathom Lower	S	S	S	S	100

SMR No.	Description	Long description	Туре	Date	Grid Ref	Townland	-	2	m		3
				5 A			Blue	Blue	Blue	Red	Yellow
		ruinous stable block and belvedere (HB16/13/029), it forms a pleasing and important architectural group.									
HB16/29/017 C	Gates and Walling	1900 - 1919 Gates and Walling at Church of the Sacred Heart (RC) Adj. to 134 Dublin Road, Newry, Co Down. Pair of cast and wrought iron gates with granite piers and flanking walls. These gates, piers and walls provide a plain entrance into the church complex, which is a mature landscape and an attractive setting for the church. The gates are executed in a similar style and materials to the rest of the buildings in the group and remain intact and good condition.	Listed B1	Modern, 20th century	J0813 2386	Drumalane	N	N	N	N	N
HB16/11/018	Entrance Screen, Narrow Water Demesne	1820 - 1839 Entrance Screen Narrow Water Demesne, Warrenpoint Road, Newry, Co Down, BT34 2PN. This gate screen leading into Narrow Water Castle Demesne was designed by Newry architect, Thomas Duff. It is constructed in local materials and designed to complement the original Narrow Water Castle (directly opposite), with decorative stepped and embattled coping and arrow loop openings.	Listed B2	Modern, 19th century	J1259 1943	Narrow Water	N	N	N	×	N
HB16/11/018	Gates	1820 - 1839 Entrance Screen Narrow Water Demesne, Warrenpoint Road, Newry, Co Down, BT34 2PN. This gate screen leading into Narrow Water Castle Demesne was designed by Newry architect, Thomas Duff. It is constructed in local materials and designed to complement the original Narrow Water Castle (directly opposite), with decorative stepped and embattled coping and arrow loop openings.	Listed B2	Modern, 19th century	J0950 2287	Fathom Lower	N	N	Ň	N	N
HB16/11/020	Former Gardener's House Narrow Water Castle	1800 - 1819 Former Gardener's House, Narrow Water Castle ,Newry Road, Warrenpoint, Newry, Co Down, BT34 2PN. Although somewhat altered in the recent past, this building is	Listed B2	Modern, 19th century	J1238 1995	Narrow Water	N	N	N	N	N

SMR No.	Description	Long description	Туре	Date	Grid Ref	Townland	e 1	Blue 2	Blue 3		Yellow
		still of strong character and, with the walled garden, forms part of the overall estate grouping.			5		Blue	Blu	Blu	Re	Yel
HB16/11/021	Stable Yard at Narrow Water Castle	1800 - 1819 Stable Yard at Narrow Water Castle, Newry Road, Warrenpoint, Newry, Co Down. Two attractive and well-proportioned stable blocks in enclosed cobbled yard of value as part of the Narrow Water demesne. They retain their external character and, although internally subdivided, some historic detail remains.	Listed B2	Modern, 19th century	J1236 1978	Narrow Water	N	N	N	'n	N
HB16/13/029	Belvedere Tower	1760 - 1779 Belvedere, Fathom Park ,Fathom Line, Newry, Co Armagh. A large and impressive belvedere looking N over the Clanrye valley situated on the hillside of Fathom Park. See also Fathom House (HB16/13/005).	Listed B2	Modern, 18th century	J0950 2287	Fathom Lower	s	S	s	\$	s
HB16/13/028	Belvedere Tower	1780-1799 Belvedere Ashton House Fathom Line Newry The Belvedere Tower is an octagonal tower with felted roof, central cast-iron lantern and boxed timber eaves. The building has been repaired in concrete blockwork	Record only	Modern, 18th century	J0946 2317	Fathom Lower	Y	Y	Y	N	N
HB16/13/009	Ashton House	1780-1799 Ashton House Fathom Line Newry It is a pleasantly situated and much altered late 18th century Georgian house with impressive entrance door case and original door. It has undergone internal refurbishment and retains few features of interest	Record only	Modern, 18th century	J0958 2323	Fathom Lower					
HB16/13/013	Bridge	1840-1859 Barracric Road, Fathom Lower Road bridge carrying the road over the double track Belfast- Dublin railway. Erected in 1851 this bridge has historical associations with Sir John Macneill and William Dargan ('father' of Irish railways). It is also an Industrial Heritage feature (00062:100:00).	Record only	Modern, 19th century	J0855 2252	Fathom Lower					

SMR No.	Description	Long description	Туре	Date	Grid Ref	Townland					
							Blue 1	Blue 2	Blue 3	Red	Yellow
HB16/13/069	Canal Locks	1840-1859 Victoria Locks Fathom Road Newry Co Armagh This is the largest single lock chamber in Northern Ireland. Its size reflects the importance of maritime trade to Newry and it also has associations with Sir John Rennie. This site is part of the scheduled Newry canal and is an Industrial Heritage feature (00172:041:00)	Record only	Modern, 19th century	J1083 2081	Fathom Upper					
D-041	Narrow Water Castle demesne	NARROW WATER CASTLE, Co. Down (REGISTERED SITE – AREA PLAN NEWRY & MOURNE 16). The present house was built during the years 1831 to 1837 to the designs of Thomas Duff of Newry (listed HB 16/11/19). It replaced an earlier house, known as Mount Hall (the name of the occupants), of which a wing survives. A map of 1800 shows this house with garden, grove and shrubbery, orchard, pasture, woods, and parkland trees. It is thought that Sir Joseph Paxton made plans for the Italian Garden, notable for its impressive grass terraces, balustrading, cut stone steps and urns. Horizontal ground was once filled with flower beds, remembered in photographs but now grassed. Early 20th century photographs also show the wild garden in the Pleasure Grounds to the north-west of the house, said to have been created by Thomas Smith of Newry. This is no longer maintained. Articles in garden journals at the end of the 19 th century mention the garden and remarkable trees are noted in Trees of Great Britain and Ireland of 1909 and 1910. A folly summer house survives on high ground in woodland. There are extensive plantations of trees. The parkland trees are few and far between. The walled garden is not cultivated and glasshouses have gone. The Head Gardener's House (or Steward's House) is very impressively large (listed HB 16/11/21). Two gate lodges survive, Castle Gate	Register of Parks, Gardens and Demesnes of Special Historic Interest	Modern, 19th century		Narrow Water	N	N	N	N	N

SMR No.	Description	Long description	Туре	Date	Grid Ref	Townland					
							Blue 1	Blue 2	Blue 3	Red	Yellow
		and Tudor Lodge by Duff (listed HB 16/11/23) and contemporary with the house. However, Duff's Newry Gate has gone and the earlier rear gate. SMR: DOWN 51:38 enclosure. The south-east corner of the demesne is a golf course. Private.									
ARM029:020	Tree ring	No information or description available. Designed landscape feature.	SMR	Modern, c18th/c19th	J0980022500	Fathom Lower	N	N	N	*	Y
ARM029:021	Tree ring	One of a group with ARM 029:020,022 & 023. No information or description available. Designed landscape feature.	SMR	Modern, c18th/c19th	J0988022370	Fathom Lower	N	N	N.	¥	Y
ARM029:022	Tree ring	One of a group of landscape features including ARM 029:020,021 & 023. No information or description available.	SMR	Modern, c18th/c19th	J0992022250	Fathom Lower	N	N	N	¥	Y
ARM029:023	Tree ring	One of a group with ARM 029:020,021 & 022. No information or description available	SMR	Modern, c18th/c19th	J0999022120	Fathom Lower	Ň	N	N	×	N
ARM029:025	Enclosure	OLD FORT, THE OLD FORT On a level terrace on the steep north-east side of Fathom Mountain, commanding an extensive view over the Newry River below. An "old fort" is remembered in this area, but there are no visible remains, and much building debris now occupies the site.	SMR	Uncertain	J0944022420	Fathom Lower	N	N	N	0	s
ARM029:033	Tower house	TOWER-HOUSE According to Paterson, there was an "old castle at Fathom" held by the O'Neills and temporarily by Elizabeth I. It was demolished 1730 in building canal and was roughly in position of the first lock.	SMR	Late-med	J1000020000	Fathom Upper	N	N	N	×.	N
ARM029:042	Battle site	BATTLE SITE, 1600 This is the site of an ambush on an English Column led by Lord Deputy Mountjoy, by Hugh O'Neill on 14th October 1600. No visible remains (all above ground features removed).	SMR	Post-med, c17th	J0990022200	Fathom Lower	N	N	N	Y	Y
DOW051:044	Narrow Water Castle	NARROW WATER CASTLE This castle, protecting the entrance to a part of Carlingford Lough, is thought to have been built by the English c1560.	State Care	Late-med	J1256019390	Narrow Water	N	N	N	N	N

SMR No.	Description	Long description	Туре	Date	Grid Ref	Townland					
							Blue 1	Blue 2	Blue 3	Red	Valiow
		After James II's defeat in 1691, it was confiscated and granted to the Halls. It is a tower 11.2m x 10.1, standing 3 storeys and an attic high. The entrance is defended by a machicolation. The tower stands within a rectangular bawn, c.36m square with walls 0.6m thick & 2m high internally, but more on the outside where it rises from the shore. There is a modern gateway through the bawn at N.									
00062:099:00	Bridge	GNR Main Line Belfast - Border	IHR		J08272347	Cloghoge	S	S	S	s	s
00062:100:00	Bridge	GNR Main Line Belfast - Border	IHR		J08412303	Cloghoge	S	s	s	s	s
00062:102:00	Bridge	GNR Main Line Belfast - Border	IHR		J08552252	Fathom Lower	Y	N	Y	Y	Y
00062:103:00	Bridge	GNR Main Line Belfast - Border	IHR		J08552195	Fathom Lower	Y	N	Y	¥.	Y
00172:041:00	Victoria Lock	Newry Canal	IHR		J10842082	Fathom Upper	N	N	N	s	s
00172:042:00	Dock House	Newry Canal	IHR		J10852072	Fathom Upper	N	N	s	×	N
00172:093:00	Quay	Newry Canal	IHR		J10892073	Fathom Upper	s	s	S	N.	N
00172:096:00	Spill weir	Newry Canal	IHR		J09392374	Cloghoge	s	s	s	N.	N
00172:039:00	Canal Locks	Newry Canal	IHR		J09982278	Fathom Lower	S	s	S	N	N
00172:113:00	Lock House	Newry Canal	IHR		J09852295	Fathom Lower	N	N	N	s	s
00172:112:00	Pump House	Newry Canal	IHR		J10792082	Fathom Upper	N	N	N	S	s
00478	Former railway	GNR Branch Line; Goraghwood-Warrenpoint	IHR			Multiple	N	N	N	¥	Y

SMR No.	Description	Long description	Туре	Date	Grid Ref	Townland					
							Blue 1	Blue 2	Blue 3	Red	Yellow
00538:002:00	Bridge	GNR Branch Line, Newry - Greenore	IHR			Fathom Lower	N	N	N	Y	Y
00538:003:00	Milepost	GNR Branch Line, Newry - Greenore	IHR			Fathom Lower	N	N	N	Y	Y
00538:005:00	Signal Post	GNR Branch Line, Newry - Greenore	IHR			Fathom Lower	N	8 N	N	×.	Y
00538:006:00	Bridge	GNR Branch Line, Newry - Greenore	IHR			Fathom Lower	N	N	N	Y	Y
00538:007:00	Milepost	GNR Branch Line, Newry - Greenore	IHR			Fathom Lower	N	2N/	N	N	N
MRD 2616	Shipwreck	British steam vessel (name unknown) partial loss in Newry River / harbour in June 1887;	Designated Wreck Zone	Modern 19 th century			N	N	N	N	Y
MRD 2631	Shipwreck	British vessel (name unknown) partial loss in Newry River / harbour on 30.06.1891	Designated Wreck Zone	Modern 19th century			N	N	N	×	N
MRD 2655	Shipwreck	British vessel (name unknown) partial loss in Newry River / harbour on 30.07.1894	Designated Wreck Zone	Modern 19th century			N	N	Ň	۲	N
MRD 2672	Shipwreck	Vessel (name unknown) partial loss in Newry River / harbour on 30.07.1897	Designated Wreck Zone	Modern 19th century			N	N	N	N	Y
MRD 2705	Shipwreck	British vessel (name unknown) partial loss in Newry River / harbour on 30.07.1903	Designated Wreck Zone	Modern 19th century			N	N	N	Y	N
	Townland Boundary	Boundary between the townlands of Fathom Lower / Cloghoge	Landscape Feature			Fathom Lower / Cloghoge	Y	Y	Y	Y	Y
WT895	Historic woodland	Long-established woodland (Planted mixed) (77ha).	Woodland Trust Old Woods		J107205	Fathom Upper	N	N	N	Y	Y
WT896	Historic woodland	Ancient Woodland (3) (Scrub) (2ha)	Woodland Trust Old Woods		J099222	Fathom Lower (Main Portion)	N	N	N	\$	Y
WT904	Historic woodland	Long-established woodland (Parkland) (4ha)	Woodland Trust Old Woods		J122198	Narrow Water	N	N	N	N	s

SMR No.	Description	Long description	Туре	Date	Grid Ref	Townland					
							Blue 1	Blue 2	Blue 3	Red	Yellow
WT905	Historic woodland	Long-established woodland (Parkland) (11ha)	Woodland Trust Old Woods		J125196	Narrow Water	N	N	N	s	s
WT906	Historic woodland	Long-established woodland (Planted mixed) (1ha)	Woodland Trust Old Woods		J123195	Narrow Water	N	N	N	(2)	s
WT907	Historic woodland	Long-established woodland (Planted mixed) (68ha)	Woodland Trust Old Woods		J113208	Narrow Water	N	N	N	5	s
WT940	Historic woodland	Long-established Woodland (1ha)	Woodland Trust Old Woods		J094229	Fathom Lower (Main Portion)	S	s	s	s	Y
WT943	Historic woodland	Long-established Woodland (1ha)	Woodland Trust Old Woods		J093233	Fathom Lower (Main Portion)	s	s	S	8	Y
CH-01	Possible site	Complex field boundaries and stands of trees, west of Hillhead Road.	AP Analysis		J 08533 24246	Cloghoge	Y	Y	Y.	N	N
CH-02	Area of palaeoenvironm ental potential	Area of palaeoenvironmental potential, Barracric Road.	AP Analysis		J 08512 23041	Cloghoge	Y	Y	Y	×	Y
CH-03	Possible site	Possible site of Wellington Inn, marked on OS 1st ed (1829- 1835). Now a field S of Barracric Road.	Historic Map Analysis		J 08530 22473	Cloghoge	Y	Y	Y	×	Y

Appendix C Annex B

Appendix C Annex B Rapid Route Option Site appraisal Plates

Photograph 5.3.1 Looking across residential and industrial areas at north

Plate 5.3.2 Looking across river at Fathom House (HB16/13/005)

Plate 5.3.3 Belvedere (HB16/13/029) associated with Fathom House

Plate 5.3.4 CH-02 area for potential palaeoenvironmental remains

Plate 5.3.5 Bridge (HB16/13/013)carrying Barracric Road over the railway

Plate 5.3.6 Victoria Locks (HB16/13/069) on the Newry Canal

Plate 5.3.7 Remains of railway bridge (00538:006:00)

Plate 5.3.8 Section of Newry River bank where railway (00478.000.00) was located

Plate 5.3.9 Section of the Newry Canal (DOW/ARM 029:500)

Plate 5.3.10 Church of the Sacred Heart (HB16/29/017A).

Plate 5.3.11 Narrow Water Castle (HB16/11/019A)

Plate 5.3.12 Looking north from route options towards Church of the Sacred Heart (HB16/29/017A)

Plate 5.3.13 Looking south from church towards route options

Plate 5.3.14 Looking towards area of Narrow Water Castle

Plate 5.3.15 Looking from the grounds of Narrow Water Castle towards area of scheme

Project number: 60472927

Appendix D Noise

	Red Option				Y.		100										
						Res								LA10,18hr	omparison	s %Nui	sance
				Min					Do Si				DM 2023		DM 2023	a statement of the same second	
antina	2023	2023	2023	2037	2037	2037	2023	2023	2023	2037	2037	2037	15	V5	VS DS 2037	V3 DM 2037	V3
ocation 1	61.1	51.2	N Mutsetter 15	61.4	51.5	to Numerice 15	1A10.18w	51.2	N Mutorer 15	61.5	51.6	N Notience	DM 2037 0.3			0.5	
2		46.5	8		46.8	.9	57	47.5		57,4	47.9	10				0.4	
3	55.8	46.5	8	56.2	46.8	9	57.1	47.6	10	57.6	48.1	10	0.4	1.3	1.8	0.4	
4		46.7	9		47.1		57.3	47.8	10	57.8	48.3	10				0.4	
5	56	46.6	9		46.9	9	57.6	48.1	10	57.9	48.3	11				0.3	
7		45.5	7		40.3	8	57	47.5	10	57.6	47.9	10				0.3	
8		45.4	7		45.6	8	57.2	47.7	10	57.7	48.2	10			1	0.3	
9	54.4	45.2	7	54.7	45.5	7	56.9	47.4	10	57.3	47.8	10	0.3	2.5	2.9	0.2	
10		44.9	7		45.3	7	57.2	47.7	10	57.6	48.1	10					
11	53.7	44.6	7		44.9	7	56.3	46.9	9	56.7 56.5	47,3	9					
13		44.6	7		44.8	7	55.8	46.5	8	56.2	46.8	9					
14		44.7	7		45.1	7	58.5	48.9	11	59	49.3	12					
15	51.7	42.8	5		43.0		57.4	47.9	10	57.9	48.3	11	0.3	5.7	6.2	0.2	- 3
16		42.2	5		42.6	5	58.1	48.5		58.5	48.9	11					
17		41.7	5		42.0		57.1	47.6		57.6	48.1	10				0.2	
18		41.2	4		41.5	5	58.1	48.5	11	58.6	49.0	11				0.2	
20		42.5	5		42.7	5	57.5	48.0	10	58	48.4	10				0.2	1
21	51.2	42.3	5		42.5	5	56.8	47.4		57.3	47.8	10				0,1	- 3
22	50.8	42.0	5		42.2	5	54.9	45.6	8	55.3	46.0	8				0.2	
23	50.9	42.0	5		42.3	5	55.4	46.1	8	55.8	46.5	8				0.2	
24		41.8	5		42.0	5	53.9 53.8	44.7	7	54.3 54.2	45.1	7				0.1	- 3
26	49.5	40.8	4		41.0	4	52.1	43.1	6	52.5	43.0	6					
27	49.1	40.4	4		40.6		52.3	43.3	6	52.6	43.6	6				0.1	
28	47.1	38.6	3	47.3	38.8	3	49.9	41.1	4	50.2	41.4	4	0.2	2.8	3.1	0.1	1
29	47.2	38.7	3	47.3	38.8	3	49.9	41.1	. 4	50.2	41.4	4	0.1	2.7	3	0.0	
30		37.6	3		37.7	3	48.4	39.8	4	48.7	40.1	- 4				0.0	
31	44.4	36.2	2		36.3	2	46.7	38.3	3	47	38.5	3				0.0	
32		36.8	2		36.9	3	47.9	39.3 57.3	28	48.2	39.6	4				0.0	
34		41.9	5		42.2	5	58.5	48.9	11	59	49.3	12				0.2	
35		54.7	22		55.1	23	65.6	55.3	23	66.1	55.7	24				0.8	
36	68.6	58.0	30	69	58.3	31	68.7	58.1	30	69.2	58.5	32	0.4	0.1	0.6	1.0	
37	67.4	56.9	27		57.3		67.8	57.3	28	68,2	\$7.6	29				1.0	
38	57.5	48.0	10		48.3	10	57.8 63.5	48.3	10	58.2	48.6	11 20				0.3	
40		47.4	10		47.7	19	57.8	48.3	19	58.1	48.5	11					
41	65.2	54.9	22		55.3	23	65.4	55.1	23	65.8	55.5	23				0.8	
42	69.2	58.5	32	69.6	58.9	33	69.3	58.6	32	69.7	59.0	33	0.4	0.1	0.5	1.0	1
43		52.1	16		52.5	17	63	52.9	18	63,4	53.3	19				0.7	
44	A.73.174	53.1	18		53.5	19	64.1	53.9	20	64.6	54.4	21				0.7	
45	66.3 54.4	55.9 45.2	25		56.3 45.5	25	66.8 54.9	55.4 45.6	26	67.3 55.3	56.8 46.0	27				0.9	
40	67.3	45.2	27	A COLUMN TWO IS NOT THE OWNER.	45.5	28	67.3	45.0	27	50.3	46.0	28				1.2	
48		51.0	14		51.3	15	60.8	51.0		61.2	51.3	15					
49	a second s	50.5	14	60.7	50.9	14	60.3	50.5	14	60.7	50.9	14	0.4	0	0.4	0.6	4
50	and the second	45.2	7	and the second se	45.6	8	54.4	45.2	7	54.8	45.6	8				0.3	
51	60.8	51.0	14		51.3	15	60.8	51.0	14	61.2	51.3	15				0.6	
52		42.0	5		42.3	5	50.8 47.7	42.0	5	51.2	42.3	5				0.2	
54	and the second se	53.3	19		53.7	19	66.1	55.7		66.5	56.1	25				0.1	
54		51.7	16		52.1	16	66.1	55.7		66.6	56.2	25					
55	61.5	51.6	15	62	52.0		66.3	55.9	25	66.8	56.4	26	0.5	4.8	5.3	0.8	10
56		50.2	13		50.6	14	66.9	56.4		67.4	56.9	27					
57		49.5	12	the second se	49.9		66.4 62.4	56.0 52.4		66.9 62.9	56.4 52.8	26					
59		49.7	13	and the second second	50.8		62.4	50.7		60.9	51.0	18					
60		52.9	18	A second s	53.3	19	63.3	53.2		63.7	53.6	19				0.5	
62		57.2	28		\$7.5		67.7	57.2		68.1	57.5						1
61		50.5	14	and the second se	50.9		60.5	50.7		60.9	\$1.0	15					
67		48.8	11		49.2		58.5	48.9		58.9	49.2	12					
66		50.3	13		50.7	14	60.2	50.4		60.6	50.8	14					
65 64	the state of the s	51.0	15	the second s	51.4	15	60.9	51.0		61.4 63	51.5	15					
68		61.3	40		61.7	41	72.3	61.3		72.7	61.7	41					
63		53.9	20		54.4		64.2	54.0		64.6	54.4						
70		42.0	5		42.2	5	58.1	48.5		58.6	49.0	11					
71		49.7	12		50.1	13	68.1	57.5		68.6	\$8.0	30					
72	75.4	64.1	49	75.8	64.5	50	75.4	64.1	49	75.8	64.5	50	0.4	0	0.4	1.2	

						Res. Scen								LA10,18hr	omparison		isance
-			Do I						Do S				DM 2023	DM 2023	DM 2023	and the second second second	
	2023	2023	2023	2037	2037	2037	2023	2023	2023	2037	2037	2037	15	75	VS.	¥3	VS
cation 1	1A10,189	51.2	to Mudsorror 15	61.4	51.5	n Nunance 15	1A10.16w	51.2	to Madoorer 15	61.5	51.6	N Numarce		DS 2023	05 2037	DM 2037 0.5	D5 203
2	55.8	46.5	8	56.2	46.8	.9	56.9	47.4	10	57.2	47.7				1.4		
3	55.8	46.5	8	56.2	46.8	9	57	47.5	10	57,4	47.9	10	0.4		1.6		
4	56.1	46.7	9	56.5	47.1	9	57.2	47,7	10	57.6	48.1				1.5		
5	56	46.6	9	56.3	46,9	9	57.4	47.9	10	57.7	48.2				1.7	0.3	
6	55.3 54.7	45.0	8	55.6 55.1	46.3 45.8	8	57 56.8	47.5	10	57.4 57.1	47.9				2.1		
8	54.6	45.4	7	54.9	45.6	8	57	47.5	10	57.4	47.9				2.8		
9	54.4	45.2	7	54.7	45.5	7	56.7	47.3	9	57.1	47.6				2.7	0.2	
10	54.1	44.9	7	54.5	45.3	7	57.1	47.6	10	57.5	48.0	10	0.4	3	3.4	0.3	
11	53.7	44.6	7	54.1	44.9	7	56.3	46.9	9	56.7	47,3						
12	53.9	44.7	7	54.3	45,1	7	56.1	46.7	9	56.5	47.1				2.6		
13	53.7 53.9	44.6	7	54 54.3	44,8 45.1	7	55.8 58.6	46.5	8	56.1 58.9	46.7				2.4		
15	51.7	42.8	5	52	43.0	6	57.4	47.9	10	57.8	48.3				6.1		
16	51.1	42.2	5	51.5	42.6	5	58	48.4	11	58.4	48.8	h			7.3	0.2	
17	50.5	41.7	5	50.8	42.0	5	57.1	47.6	10	57,4	47.9	1	0.3	6.6	6.9	0.2	
18	50	41.2	4	50.3	41.5	5	58.1	48.5	11	58.5	48.9				8.5		
19	50	41.2	4	50.3	41.5	5	61.2	51.3	15	61.6	51.7				11.6		
20	51.4	42.5	5	51.6	42.7	5	57.6 56.9	48.1	10	57.9	48.3				6.5 6.1	0.1	
22	50.8	42.0	5	51.1	42.2	5	54.8	45.6	8	55.2	45.9				4.4		
23	50.9	42.0	5	51.2	42.3	5	55.5	46.2	8	55.8	46.5				4.9		
24	50.6	41.8	5	50.8	42.0	5	54	44.8	7	54.3	45.1				3.7		
25	50.2	41.4	4	50.5	41.7	5	53.8	44.7	7	54.1	44.9				3.9		
26	49.5	40.8	4	49.7	41.0	4	52	43.0	6	52.3	43.3				2.8		
27	49.1	40.4 38.6	3	49.3	40.6	4	52.2 49.7	43.2	6	52.5	43.5				3.4		<u> </u>
29	47.2	38.7	3	47.3	38.8	3	49.7	41.0	4	50	41.2				2.8		
30	46	37.6	3	46.1	37.7	3	48.2	39.6	4	48.4	39.8				2.4		
31	44.4	35.2	2	44.5	36.3	2	46.6	38.2	3	46.8	38.4	3	0.1	2.2	2.4	0.0	1
32	45.1	36.8	2	45.2	36.9	3	47.6	39.1	3	47,9	39.3				2.8		
33	60.3	50.5	14	60.8	51.0	14	67.4	56.9	27	67.8	57.3				7.5		
34	50.7	41.9	5	51.1 65.4	42.2	5	58.4	48.8	11 23	58.7	49.1				8		
36	68.6	58.0	30	69	58.3	31	68.7	58.1	30	69.1	58.4				0.5		
37	67.4	56.9	27	67.8	57.3	28	67.7	57.2	28	68.1	57.5				0.7	1.0	
38	57.5	48.0	10	57.8	48.3	10	57.8	48.3	10	58.1	48.5	11	0.3	0.3	0.6	0.3	
39	63.3	53.2	18	63.7	53.6	19	63.5	53.4	19	63.9	53.7				0.6		
40	56.9	47.4	10	57.2	47.7	10	57.7	48.2	10	58	48.4				1.1		
41	65.2 69.2	54.9 58.5	22	65.6 69.6	55.3 58.9	23	65.4 69.2	55.1 58.5	23	65.8 69.7	55.5				0.6	0.8	
43	62.1	52.1	16	62.5	52.5	17	62.9	52.8	18	63.2	53.1				1.1	0.7	
44	63.2	53.1	18	63.6	53.5	19	61.9	51.9	16	62.4	52.4				-0.8		
45	66.3	55.9	25	66.7	56.3	25	66.2	55.8	24	66.6	56.2				0.3		
46	54.4	45.2	7	54.7	45.5	7	63.5	53.4	19	63.9	53.7				9.5	0.2	
47	67.3	56.8	27	67.8	57.3	28	71.2	60.3	37	71.6	60.7				4.3		
48	60.8	51.0	14	61.2	51.3 50.9	15	62.4	52.4	17	62.8 62.2	52.8				2		
49	54.4	45.2	14	54.8	45.6	14	56.3	46.9	16	56.7	47.3				2.3		
51	60.8	51.0	14	61.2	51.3	15	61.7	51.8	16	62.2	52.2				1.4		
52	50.8	42.0	5	51.2	42.3	5	52.8	43.8	6	\$3.2	44.1	6	0.4	2	2.4		
53	47.7	39.2	3	48	39.4	3	50	41.2	4	50.3	41.5			-	2.6		
54	63.4	53.3	19	63.8	53.7	19	65.8	55.5	23	66.2	55.8						
54	61.6	51.7	16	62.1	52.1	16	65.7	55.4	23	66.1	55.7				4.5		
55	61.5 60	51.6 50.2	15	62 60.4	52.0 50.6	16	65.9 65.9	55.5	24	66.3 66.3	55.9						
57	59.2	49.5	13	59.6	49.9	14	65.2	54.9	22	65.6	55.3						
58	60.1	50.3	13	60.6	50.8	14	61.9	51.9	16	62.3	52.3						
59	59.4	49.7	12	59.8	50.1	13	60.1	50.3	13	60.5	50.7				1.1		
60	63	52.9	18	63.4	53.3	19	63.3	53.2	18	63.7	53.6				0.7		
62	67.7	57.2	28	68.1	57.5	29	67.7	57.2	28	68.1	57.5						
61 67	60.3 58.4	50.5 48.8	14	60.7 58.9	50.9 49.2	14	60.S	50.7 48.9	14	60.9 58.9	51.0 49.2				0.6		
66	58.4	+8.8 50.3	11	60.5	49.2	12	60.2	50.4	14	58.9	49.2				0.5		
65	60.9	51.0	15	61.3	51.4	15	60.9	51.0	15	61.3	51.4				0.4		
64	62.5	52.5	17	63	52.9	18	62.6	52.6	17	63	52.9						
68	72.3	61.3	40	72.7	61.7	41	72.3	61.3	40	72.7	61.7				0.4		
63	64.1	53.9	20	64.6	54.4	21	64.2	54.0	20	64.6	54.4				0.5		
70	50.8	42.0	5	51.1	42.2	5	58.1	48.5	11	58.5	48.9				7,7		
71	59.4	49.7	12	59.B	50.1	13	67.1	56.6	26	67.5	\$7.0	27	0.4	7.7	8.1	0.5	1

Dive	Route Optio	on 1									· · · · · ·						
						Res. Scen								LA10,18hr	Comparison		sance
				Min					Do 5				DM 2023		DM 2023	and the second second second second	
ocation	2023	2023	2023	2037	2037	2037	2023	2023	2023	2037	2037	2037	V5 DM 2037	V5 D5 2023	V5 DS 2037	V3 DM 2037	V5 D5 2037
DCathon 1	61.1	51.2	Withdoneor 15	61.4	51.5	n Numeror 15	67	56.5	The Mandesorter 26	67,4	56.9	N Numarce 27				0.5	1
2		46.5	8	56.2	46.8	9	56.4	47.0	9	56.8	47.4	9		0.6	1	0.4	
3	55.8	46.5	8		46.8	9	56.3	46.9	9	56.7	47.3	9					
4	56.1	46.7	9		47.1		56.5 56.9	47.1	9	56.9 57.2	47.4	10				0.4	
6	and the second se	46.0	9		46.3	8	56.4	47.0	9	56.8	47.4	9					
7		45.5	7		45.8	8	56	46.6	9	56.4	47.0	9					-
8	54.6	45.4	7	54.9	45.6	8	56	46.6	9	56.3	46.9	9	0.3	1.4	1.7	0.3	
9		45.2	7		45.5	7	55.8	46.5	8	56.1	46.7	9					
10		44.9	7		45.3	7	55.7	46.4	8	56.1 55.5	46.7	9					
12		44.7	7		45.1	7	55.1	45.8	8	55.5	46.2	8					
13		44.6	7		44.8	7	55	45.7	8	55.4	46.1	8				0.2	
.14		44.7	7		45.1	7	56.3	46.9	9	56.7	47.3	9					
15		42.8	5		43.0	6	54.7	45.5	7	55	45.7	8				0.2	- 2
16		42.2	5		42.6	5	54.7	45.5	7	55.1 54.6	45.8	8		-		0.2	
1/		41.2	4		41.5	5	54.3	45.1	7	54.6	45.4	7				0.2	1
19		41.2	4		41.5	ŝ	54.5	45.3	2	54.9	45.6	8				0.2	1
20		42.5	5		42.7	5	55.5	46.2	8	55.9	46.5	9				0.1	
21		42.3	5		42.5	5	55.7	46.4	8	56.1	46.7	9					
22		42.0	5		42.2	5	56.1	46.7	9	56.4 55.7	47.0	9				0.2	
24		41.8	5		42.0	5	54	44.8	7	54.3	45.1	7				0.2	- 2
25		41.4	4		41.7	5	53.1	44.0	6	53.5	44.4	7	0.3	2.9		0.2	
26		40.8	4		41.0	4	50.9	42.0	5	51.2	42.3	5					9
27		40.4	4		40.6	- 4	51.1	42.2	5	51.4	42.5	5					1
28		38.6	3		38.8	3	49.1	40.4	4	49.3	40.6	4					
30		37.6	3	and the second se	37.7	3	47.4	38.9	3	47.6	39.1	3					
31		36.2	2		36.3	2	45.6	37.3	3	45.7	37.4	3					
32		36.8	2		36.9	.3	-47	38.5	3	47.2	38.7	3					
33		50.5	14		51.0	14	63.7	53.6	19	64.1	53.9	20				0.7	
34		41.9	5		42.2	5	62.5	52.5	17	62.9	52.8	18				0.2	1
36		58.0	30		58.3	31	68.5	57.9	30	68.9	58.2	31				1.0	
37		56.9	27		57.3	28	67.7	57.2	28	68.1	57.5	29				1.0	
38		48.0	10		48.3	10	59.9	50.1	13	60.2	50.4	14					- 3
39		53.2	18		53.6	19	63.7	53.6	19	64.1	53.9	20				0.7	1
40		47.4	10		47.7	10 23	58.1 65.3	48.5	11 22	58.5 65.8	48.9	11 23				0.3	3
42		58.5	32	and a strength	58.9	33	69.2	58.5	32	69.6	58.9	33				1.0	1
43	and the second sec	52.1	16	the second se	52.5	17	62.1	52.1	16	62.5	52.5	17				0.7	
- 44	A.73.174	53.1	18	63.6	53.5	19	63.2	53.1	18	63.6	53.5	19				0.7	
45		55.9	25		56.3	25	66.3	55.9	25	66.7	56.3	25					
46		45.2	7	A COLUMN TWO IS NOT THE OWNER.	45.5	7 28	54.4 67.3	45.2	7 27	54.7 67.8	45.5	7				0.2	
48		51.0	14		51.3	15	60.8	51.0	14	61.2	51.3	15					
49	and the second se	50.5	14	60.7	50.9	14	60.3	50.5	14	60.7	50.9	14	0.4				1
50	and the second se	45.2	7		45.6	8	54.4	45.2	7	54.8	45.6	8					
51		51.0	14		51.3	15	60.8	51.0	14	61.2	51.3	15				0.6	
52		42.0	5		42.3	5	50.8 47.7	42.0	5	51.2	42.3	5				0.2	1
54	and the second se	53.3	19	1	53.7	19	68.8	58.2	30	69.2	58.5	32					
54		51.7	16		52.1	16	68.7	58.1	30	69.1	58.4	31					
55		51.6	15		52.0	16	68.1	57.5	29	68.5	57.9	30					
56		50.2	13		50.6	14	66.2	55.8	24	66.6	56.2	25					
57		49.5	12	the second se	49.9	13	65.4 62.1	55.1 52.1	23	65.8 62.5	55.5 52.5	23					1
59		49.7	12	and the second second	50.1	13	60.3	50.5	14	60.8	51.0	14					
60		52.9	18	the second se	53.3	19	63.1	53.0	18	63.6	53.5	19					
62	and the second sec	57.2	28		\$7.5	29	67.7	57.2	28	68.1	57.5	29					
61		50.5	14	and the second se	50.9	14	60.5	50.7	14	60.9	51.0						
67		48.8	11		49.2 50.7	12	58.5	48.9	11	58.9 60.6	49.2	12					
65		51.0	15		51.4	14	60.9	51.0	15	61.3	51.4	15					
64	total stand loss for	52.5	17		52.9	18	62.6	52.6	17	63	52.9	18					
68		61.3	40		61.7	41	72.3	61.3	40	72.7	61.7	41					
63	10000	53.9	20		54.4	21	64.2	54.0	20	64.6	54.4	21					
70		42.0	5		42.2	5	56.8	47.4	9	57.2	47.7	10					
71		49.7	12		50.1	13	67.6	57.1	28	68	57.4	28					
72	12.4	0+.1	49	75.8	64.5	50	75.4	64.1	49	75.8	64.5	50	0.4	0	0.4	1.2	

Blue	Route Optio	m 2			1								1	1			
						Res. Scen								LA10,18hr	omparison		sance
-				Min					Do 5				DM 2023		DM 2023		
ocation	2023	2023	2023	2037	2037	2037	2023	2023	2023	2037	2037	2037	V5 DM 2037	V5 D5 2023	VS DS 2037	V3 DM 2037	V3 D5 2037
bcabon 1	1A10,189	51.2	te Mutanece 15	61.4	51.5	n Numerier 15	1A10.18+ 68.1	57.5	The Mandoorne #	68.5	57.9	N Notarce 30		05 2025	7.4	0.5	1
2	55.8	46.5	8	56.2	46.8	9	56.8	47.4	9	57.2	47.7	10	0.4	1	1.4	0.4	
3	55.8	46.5	8		46.8	9	56.6	47.2	9	57	47.5	10				0.4	
4	56.1	46.7	9		47.1		56.9 57.3	47.4	10	57.2	47.7	10				0.4	
6	and the second second	46.0	9		46.3	8	56.8	47.4	9	57.1	47.6	10				0.3	
7		45.5	7		45.8	8	56.3	46.9	9	56.7	47.3	9				0.3	
8	54.6	45.4	7	54.9	45.6	8	56.3	46.9	9	56.6	47.2	9	0.3	1.7	2	0.3	
9		45.2	7		45.5	7	56.1	46.7	9	56.4	47.0	9				0.2	
10	54.1	44.9	7		45.3	7	56.1	46.7	9	56.5	47.1	9				0.3	
11	53.7	44.7	7		45.1	7	55.6 55.6	46.3	8	56 56	46.6	9				0.3	
13	53.7	44.6	7	and the second se	44.8	7	55.4	46.1	8	55.8	46.5	8				0.2	
14	53.9	44.7	7		45.1	7	58.6	49.0	11	59	49.3	12	0.4	4.7	5.1	0,3	
15	51.7	42.8	5		43.0	6	57.3	47.8	10	57.7	48.2	10				0.2	
16	51.1	42.2	5		42.6	5	57.9	48.3	11	58.3	48.7	11		-		0.2	2
17	50.5	41.7	5		42.0	5	57.2	47,7	10	57.5 58.6	48.0	10				0.2	2
18	50	41.2	4		41.5	3	60.1	50.3	13	60.5	50.7	14				0.2	1
20	51.4	42.5	5		42.7	5	56	46.6	9	56.3	46.9	9				0.1	Ĵ
21	51.2	42.3	5	51.4	42.5	5	56.8	47,4	9	57.1	47.6	10	0.2	5.6	5.9	0,1	
22	50.8	42.0	5		42.2	5	55.2	45.9	8	55.5	46.2	8				0.2	1
23	50.9	42.0	5		42.3	5	54.7	45.5	7	55.1	45.8	8				0.2	
24	50.6 50.2	41.8	5		42.0	5	53.7	44.6	7	54.1	44.9	7				0.1	
26	49.5	40.8	4		41.0	4	51.3	42.4	5	51.7	42.8	5				0.1	
27	49.1	40.4	4		40.6	- 4	51.6	42.7	5	52	43.0	6				0.1	
28	47.1	38.6	3	47.3	38.8	3	49.7	41.0	4	50	41.2	4	0.2	2.6	2.9	0.1	1
29	47.2	38.7	3	and the second se	38.8	3	49.7	41.0		50	41.2	4				0.0	
30	46	37.6	3		37.7	3	48.3	39.7	.4	48,6	40.0	4				0.0	
31	44.4	36.2	2		36.3	2	46.3	37.9	3	46.5	38.1 39.3	3				0.0	
33	60.3	50.5	14		51.0	14	47.6	39.1	22	65.3	55.0	22				0.0	-
34		41.9	5		42.2	5	64.3	54.1	20	64.7	54.5	21				0.2	1
35	65	54.7	22	65,4	55.1	23	65.5	55.2	23	65.9	55.5	24	0.4	0.5	0.9	0.8	3
36	68.6	58.0	30		58.3	31	68.8	58.2	30	69.2	58.5	32				1.0	
37	67.4	56.9	27		57.3	28	67.8	57.3	28	68,2	57.6	29				1.0	- 3
38	57.5	48.0	10		48.3	10	59.5 63.6	49.8 53.5	13	59.8 64	50.1	13		0.3	b. OCT101	0.3	
40	56.9	47.4	10		47.7	10	58	48.4	11	58.4	48.8	11				0.3	
41	65.2	54.9	22		55.3	23	65.3	55.0		65.8	55.5	23				0.8	
42	69.2	58.5	32	69.6	58.9	33	69.2	58.5	32	69.6	58.9	33	0.4	0	0.4	1.0	1
43	62.1	52.1	16		52.5	17	62.1	52.1	16	62.5	52.5	17				.0.7	- 3
44	63.2	53.1	18	63.6	53.5	19	63.2	53.1	18	63.6	53.5	19		0		0.7	3
45	66.3 54.4	55.9 45.2	25		56.3 45.5	25	66.3 54.4	55.9 45.2	25	66.7 54.7	56.3 45.5	25				0.9	-
47	67.3	56.8	27		45.5	28	67.3	95.2	27	67.8	45.5	28				1.2	
48	60.8	51.0	14		51.3	15	60.8	51.0	14	61.2	51.3	15				0.6	
49	60.3	50.5	14	60.7	50.9	14	60.3	50.5	14	60.7	50.9	14	0.4			0.6	
50	54.4	45.2	7		45.6	8	54.4	45.2	7	54.8	45.6	8				0.3	
51	60.8	51.0	14		51.3	15	60.8	51.0	14	61.2	51.3	15		0		0.6	
52	50.8	42.0	5		42.3	5	50.8 47.7	42.0	5	51.2	42.3	5				0.2	3
54	and the second se	53.3	19	1	53.7	19	66.6	56.2	1.00	66.9	56.4					0.1	
54		51.7	16		52.1	16	65.9	55.5		66.1	55.7	24					
55	61.5	51.6	15		52.0	16	65.5	55.2	23	65.7	55.4	23	0.5			0.8	
56		50.2	13		50.6	14	66.5	56.1		66.6	56.2	25				0.6	
57		49.5	12	the second se	49.9	13	66.2	55.8		66.4	56.0	25				0.5	
58		50.3 49.7	13	and the second se	50.8 50.1	14	62.4	52.4		62.7 60.8	52.7	17				0.5	
60		52.9	18	the second se	53.3	19	63.1	53.0		63.5	53.4	19				0.5	
62		57.2	28		\$7.5	29	67.7	57.2		68.1	57.5	29				1.0	
61		50.5	14	the second s	50.9	14	60.5	50.7		60.9	\$1.0					0.6	
67		48.8	11		49.2	12	58.5	48.9		58.9	49.2	12					
66		50.3	13		50.7	14	60.2	50.4		60.6	50.8	14				0.6	
65 64	total advantation of the	51.0	15		51.4	15	60.9	51.0		61.3 63	51.4	15				0.6	
68		61.3	40	a second s	61.7	41	72.3	61.3		72.7	61.7	41				1.2	
63		53.9	20		54.4	21	64.2	54.0		64.6	54.4	21				1.0	
70	10000	42.0	5		42.2	5	59	49.3	100	59.4	49.7	12				0.2	
71	59.4	49.7	12		50.1	13	67.7	57.2	28	67.8	\$7.3	28				0.5	
72	75.4	64.1	49	75.8	64.5	50	75.4	64.1	49	75.8	64.5	50	0.4	0	0.4	1.2	

	Route Opto		-			Res	alts.								omparison	4	
						Scen								LA10,18hr		% Nui	
	2023	2023	2023	2037	2037	2037	2023	2023	2023	2037	2037	2037	DM 2023	DM 2023	DM 2023	DM 2023	DM 2023
ocation	1A10.189	anaphi .	N Mulsonor	LASO,1864	Cright	% Numeror	1410.18w	Shafe	To Madoorne	CASO, LEMY	Logia	% Numarce	DM 2037	DS 2023	DS 2037	DM 2037	05 2037
1	61.1	51.2	15	61.4	51.5	15	68.2	57.6	29	68.6	58.0			7.1			1
2		46.5	8	56.2	46.8	9	56.7	47.3	9	57.1	47.6			0.9		0.4	
4		46.7	9	56.5	40.8	9	56.8	47.4	9	57.2	47.7	10		0.7		0.4	
5		46.6	9	56.3	46.9	9	57.1	47.6		57.4	47.9			11			
6	55.3	46.0	8	55.6	46.3	8	56.5	47.1	9	56.8	47.4	9	0.3	1.2	1.5	0,3	
7		45.5	7	55.1	45.8	8	56	46.6	9	56.3	46.9			1.3			3
8		45.4	7	54.9	45.6	8	55.9	46.5	9	56.3	46.9	9		1.3		0.3	
10	and the second se	45.2	7	54.7 54.5	45.5	7	55.7	45.4	8	56.1 56.1	46.7	9		1.3			-
11	53.7	44.6	7	54.1	44.9	7	55.1	45.8	8	55.5	46.2	8		1.4			
12	53.9	44.7	7	54.3	45,1	7	54.9	45.6	8	55.3	46.0	8	0.4	1	1.4	0.3	
13		44.6	7	54	44,8	7	54.8	45.6	8	55.1	45.8			1.1			
14		44.7	7	54,3	45.1	7	57	47.5	10	57,3	47.8			3.1			3
15		42.8	5	51.5	43.0	5	54.4	45.2	8	54.8 55.2	45.6			3.7			
17		41.7	ś	50.8	42.0	5	53.4	44.3	6	53.8	44.7	7		2.9			- 3
18	50	41.2	4	50.3	41.5	5	53.7	44.5	7	.54	44,8	7	0.3	3.7	4		3
19		41.2	4	50.8	41.5	\$	55.3	45.0	8	55.7	46.4			5.3		0.2	- 3
20	and the second sec	42.5	5	51.6	42.7	5	54.3	45.1	7	54.7	45,5	7		2.9			
21	51.2	42.3	5	51.4	42.5	5	54.6	45.4	7	54.9	45.6	8		3.4			- i
22	50.8 50.9	42.0	5	51.1	42.2	5	53.5 53.4	44.4	6	53.9 53.8	44.7	7		2.7		0.2	
24		41.8	5	50.8	42.0	5	52.7	43.7	6	53	43.9			2.1			
25		41.4	4	50.5	41.7	5	52.4	43.4	6	52.7	43.7	6		2.2			- 3
26		40.8	- 4	49.7	41.0	- 4	50.8	42.0	5	51.1	42,2	5		1.3			
27	49.1	40.4	4	49.3	40.6	- 4	50.9	42.0	5	51.2	42.3	5		1.8			
28		38.6	3	47.3	38.8	3	49 49	40.3	4	49.3 49.3	40.6			1.9		0.1	6
30		37.6	3	47.5	30.0	3	49	39.0	3	49.5	39.3	3		1.5			
31	44.4	36.2	2	44.5	36.3	2	45.7	37.4	3	45.8	37.5			1.3			
32		36.8	2	45.2	36.9	3	47	38.5	3	47.3	38.8			1.9			
33	60.3	50.5	14	60.8	51.0	14	64.9	54.6	22	65.3	55.0	22	0.5	4.6	5	0.7	- 3
34		41.9	5	51.1	42.2	5	66.4	56.0	25	66.8	56.4			15.7		0.2	2
35		54.7	22	65,4	55.1	23	65.4	55.1	23	65.9	55.5	24		0.4			
36	68.6	58.0	30	67.8	58.3	31 28	68.7 67.8	58.1	30	69.2 68.2	58,5	32		0.1			
38		48.0	10	57.8	48.3	10	59.8	50.1	13	60.1	50.3	13		2.3			
39		53.2	18	63.7	53.6	19	63.6	53.5	19	64	53.8			0.3		0.7	Č.
40	56.9	47.4	10	57.2	47.7	10	\$7.7	48.2	10	58.1	48.5	11	0.3	0.8	1.2	0.3	
41		54.9	22	65,6	55.3	23	65.3	55.0	22	65.7	55.4			0.1			
42	and the second sec	58.5	32	69.6	58.9	33	69.2	58.5	32	69.6	58.9			0			
43		52.1	16	62.5	52.5	17	62.1	52.1	16	62.5	52.5	17		0			
45	A.73.174	55.9	25	66.7	56.3	25	66.3	55.9	25	66.7	56.3	25		0			
46	54.4	45.2	7	54.7	45.5	7	54.4	45.2	7	54.7	45.5	7		0		10.05	
47	67.3	56.8	27	67.8	57.3	28	67.3	56.8	27	67.8	57.3	28	0.5	0		1.2	- 3
48	in the second	51.0	14	61.2	51.3	15	60.8	51.0	14	61.2	51.3			0			
49		50.5	14	60.7	50.9	14	60.3	50.5	14	60.7	50.9	14		0			
50	54.4 60.8	45.2	7	54.8	45.6	8	54.4 60.8	45.2	7	54.8 61.2	45.6	8		0			
52		42.0	5	51.2	42.3	5	50.8	42.0	5	51.2	42.3	5		0			1
53		39.2	3	48	39.4	3	47.7	39.2	3	48	39.4			0			-
54		53.3	19	63.8	53.7	19	66.3	55.9	25	66.7	56.3						
54		51.7	16	62.1	52.1	16	65.5	55.2	23	65.9	55.5			3.9			
55		51.6	15	62	52.0	16	65.2	54.9	22	65.6	55.3						
56		50.2 49.5	13	60.4 59.6	50.6 49.9	14	66 65.7	55.6	24	66.4 66.1	56,0			6.5			
58		50.3	13	60.6	50.8	14	62.2	52.2	17	62.6	52.6						
59	59.4	49.7	12	59.8	50.1	13	60.4	50.6	14	60.8	51.0						
60		52.9	18	63.4	53.3	19	63.1	53.0	18	63.5	53.4						
62	and the second sec	57.2	28	68.1	57.5	29	67.7	57.2	28	68.1	57.5			0			
61		50.5 48.8	14	60.7 58.9	50.9	14	60.4 58.5	50.6	14	60.9 58.9	\$1.0 49.2			0.1			
66		98.8	11	60.5	49.2	12	58.5	48.9	11	58.9	49.2						
65		51.0	15	61.3	51.4	15	60.9	51.0	15	61.3	51.4			0			
64	the state of the s	52.5	17	63	52.9	18	62.6	52.6	17	63	52.9						
68		61.3	40	72.7	61.7	41	72.3	61.3	40	72.7	61.7						
63	1000	53.9	20	64.6	54.4	21	64.2	54.0	20	64.6	54.4						
70		42.0	5	51.1	42.2	5	55.7	46.4	8	56.1	46.7			4.9			
71		49.7	12	59.8	50.1	13	67.2	56.7	27	67.6	\$7.1	28		7.8			
72	75.4	64.1	49	75.8	64.5	50	75.4	64.1	49	75.8	64.5	50	0.4	0	0.4	1.2	

DRAFT

Appendix E Assessment Summary Tables

Prepared for: Department for Infrastructure (Dfl) Roads

Newry Southern Relief Road - Red Route **Description** – A 4.00km S2/Wide Single Carriageway Climbing Lane Section links the A2 Warrenpoint Road to the A1/N1 Belfast Dublin Corridor. **Main Constraints –** The majority of traffic currently passing through Newry converges in the centre of the city, resulting in considerable congestion.

								Optimisin Blas) – 2115.4040
Objective	Sub-Objective	Qualitative Impacts	Quantitative	Assessment				Assessment
		Red Route is forecasted to have a beneficial local air quality effect by removing a proportion of traffic (particularly HDVs) from the city centre, leading to less congestion and reduced pollution. Two existing AQMAs would be indirectly affected as a result of removal	Number of prop	perties within 200r	n of indicative alig	nment centreline:	:	
	Air Quality	of some strategic traffic from the city. However, the change would likely not be significant enough to result in the AQMAs being revoked. In terms of impacts upon sensitive vegetation, the Red Route would be least preferred.	Centreline -			150-200m	Total	- Slight Adverse – Slight Beneficial
		NO_2 and PM_{10} levels at each assessed receptor would be 'Well Below' the NAQS limit values and the significance of effect in all cases would be Negligible, irrespective of the absolute adverse or beneficial change concentrations. The route would however result in an increase in regional emissions.	10	11	15	7	43	
ENVIRONMENT		Red Route has the possibility of impacting upon a 1600's battle site (ARM029:042), four tree ring sites in Fathom Lower	Nine low value qualitative impa	assets would be a acts.	detailed under			
	Cultural Heritage	(ARM029:020; ARM029:021; ARM029:022; ARM029:023), the former lines of the Industrial Heritage Record GNR Branch Line from Goraghwood to Warrenpoint (00478) and the Newry and Greenore Railway (00538), Iong-established woodland of historic value at Fathom Upper (WT895) whilst also crossing the boundaries between the townland of Cloghogue with Fathom	areas of palaed	unknown value wo benvironmental po while the river cro	ormer	Large Adverse		
		Upper. The crossing of the Newry River may also impact upon shipwrecks in the river and upon the setting of the Newry Ship Canal (especially Victoria Lock); the bridge carrying the Barracric Road over the Belfast-Dublin railway line; and Fathom House & its associated Belvedere Tower.	the Newry Ship listed gates and listed Belveder Fathom Lower	al to impact upon Canal, the B+ lisi d walling and its n e Tower (Fathom and three low valu ient woodland (W	d associated B1 ne high value B2 osure or 'fort' in thom Lower,			
	Ecology & Nature Conservation	Carlingford Shore SAC is approximately 3.5km south-east of the Red Route. A bridge approximately 480m long would traverse Carlingford Lough ASSI. Piers would be required through the estuarine sediments. Habitat connectivity between Fathom Upper ASSI and Fathom Lower Woods & Grasslands SLNCI would be fragmented. The Red Route would have major direct impacts on several SLNCIs (including very significant adverse impacts upon ancient and long-established woodland). This route also traverses agricultural land with numerous hedgerow. As Priority Habitat and important wildlife corridors, hedgerow loss would be detrimental, causing habitat fragmentation for local wildlife.	N/A (Qualitative As	sessment Only)				Large Adverse

Newry Southern Relief Road - Red Route **Description** – A 4.00km S2/Wide Single Carriageway Climbing Lane Section links the A2 Warrenpoint Road to the A1/N1 Belfast Dublin Corridor. **Main Constraints –** The majority of traffic currently passing through Newry converges in the centre of the city, resulting in considerable congestion.

bjective	Sub-Objective	Qualitative Impacts	Quantitative Assessment	Assessment
	Landscape Effects	Slight encroachment into Mourne AONB, though the route would have a significant impact on the Ring of Gullion AONB, resulting in significant loss of mature woodland vegetation, in combination with major earthworks on the western valley side. However, the road would follow contours as much as possible. Would however require the removal of large areas of long established woodland as well as sections of ancient woodland. The bridge crossing would potentially divide the river basin and indeed the overall river valley into two parts by creating a strong visual and physical barrier when viewed from the A2. Red Route is least preferred as it would cross the river valley at its widest point resulting in maximum landscape and visual impact. The limited number of receptors would minimise visual impacts over this section of the route.	N/A (Qualitative Assessment Only)	Landscape Large Adverse to Very Large Adverse Visual Moderate Adverse to Large Adverse
		Would not encroach into the settlement development limit as designated in the Banbridge / Newry & Mourne Area Plan 2015. Would marginally encroach into Narrow Water Forest SLNCI, but cause no severance. Would encroach into and sever the most southerly (and by far the largest) of the three parcels associated	Seven properties at risk of demolition (including six residential properties and one commercial property).	
	Land Use	with Fathom Lower Woods & Grasslands SLNCI resulting in significant losses from this zoned area and a significant impact upon its nature conservation, setting and amenity value. All route options would traverse a similar length of agricultural land. Would not affect any designated Community areas or facilities; however, the route may affect publically accessible woodland at Fathom	Five residential properties at risk of private land loss, all being subject to minor impacts.	Slight Adverse - Large Adverse
		Forest. Would have by far the greatest impact on Forest Service woodlands and long-established/ancient woodland. Would impact the greatest amount of non-Forest Service woodland. Would include a bascule bridge over the canal to negate any restriction on ship passage.	Six planning applications at risk of direct impacts. For those that are still extant, the impact would be minor.	
		Would have the lowest number of receptors, both within 50m, (the zone where noise levels would be greatest), and within 300m.	When comparing the Do-Minimum in the Baseline Year (year of opening) with the Do-Something in the Future Year (15th Year) for the Red Route, 62 properties would experience a less than 10% increase in noise nuisance. 7 would experience a 10-20% increase in noise nuisance, and 3 would experience no change.	
	Noise & Vibration	Would require a significant degree of earthworks (cutting and embankments) and bridge works, though as it is not located close to the more populous part of Newry, this would be preferred.	Under this scenario, it is predicted that the 68 dB L _{A10, 18hr} value would be exceeded at 7 properties under the 'Do-Something' scenario. It is noted that 6 of these properties would exceed this value under the 'Do-Minimum' scenario due to the existing road network.	Neutral – Large Adverse
			There are 17 properties which would be exposed to levels in excess of 55 dB L _{night} , _{outside} under the 'Do-Something' scenario in the Future assessment year.	

Newry Southern Relief Road - Red Route **Description** – A 4.00km S2/Wide Single Carriageway Climbing Lane Section links the A2 Warrenpoint Road to the A1/N1 Belfast Dublin Corridor. **Main Constraints –** The majority of traffic currently passing through Newry converges in the centre of the city, resulting in considerable congestion.

		Comdol.		congestion.	Optimism Bias) – £113.404m
Objective	Sub-Objective	Qualitative Impacts	Quantitative Assessment		Assessment	
	Vehicle Travellers	New and interesting views would be opened-up. Currently, driver stress levels through the affected road network of Newry are considered to be 'High', and would be expected to reduce on completion of the scheme.	N/A (Qualitative Assessment Only)		Views : Moderate Driver Stress: Mod	
	Road Drainage & the Water Environment	Would not directly affect any designated or known shellfishery beds. It would however traverse Carlingford Lough ASSI. Would not be located within the Q_{100} river and surface water floodplain associated with the Newry River or the Q_{200} Sea Floodplain associated with the Newry Estuary. The feeder stream to Bensons Glen Fish Hatchery would be directly affected.	N/A (Qualitative Assessment Only)		Moderate Adverse	
	Geology & Soils	Would potentially have a greater impact on soils as a result of its rural location and overall length. Would potentially have a lower potential impact on contaminated soils/groundwater.	N/A (Qualitative Assessment Only)		Slight Adverse	
			For the Opening Year:	RTF 2015 Growth	TEE (RTF 2015 G	rowth)
			Total Vehicle-Hours Saved (Two-Way):	214,000	Consumer PVB:	£67.337m
					Business PVB:	£38.340m
				8.9 mins saved on strategic route	Private PVB:	£0.342m
		Significantly reduced peak and off-peak journey times on the road		Warrenpoint to / from Carrickcarnan 3.2 mins saved on strategic route	ITR PVB:	-£1.734m
CONOMY	Transport Significantly reduced peak and off-peak journey times on the road network in the 2023 year of opening compared to existing routes by avoiding the congested urban road network within Newry City Centre.		Warrenpoint to / from Camlough 6.0 mins saved on strategic route Warrenpoint to / from Carnbane	Emissions PVB:	£0.294m	
		Economic network in the 2023 year of opening compared to existing routes by avoiding the congested urban road network within Newry City	Average Journey Time Change (Mins/Veh):	3.9 mins saved on strategic route Warrenpoint to / from Sheepbridge	Government Funding PVC:	£59.262m
				3.6 mins saved on strategic route Greenbank Rbt to / from	Overall PVB	£109.498m
			Carrickcarnan -0.5 mins saved on strategic route	Overall PVC	£59.899m	
				City Centre to / from Carrickcarnan	NPV	£49.599m
					BCR	1.828

Newry Southern Relief Road - Red Route **Description** – A 4.00km S2/Wide Single Carriageway Climbing Lane Section links the A2 Warrenpoint Road to the A1/N1 Belfast Dublin Corridor. **Main Constraints –** The majority of traffic currently passing through Newry converges in the centre of the city, resulting in considerable congestion.

Objective	Sub-Objective	Qualitative Impacts	Quantitative	Assessment				Assessment
	Reliability	Improved journey time reliability through the provision of a Newry Southern Relief Road to address acknowledged operational congestion through Newry City Centre.	N/A – Qualitativ	ve Assessment Or	ıly			
	Pedestrians, Cyclists & Equestrians	Would potentially affect two alleged PROWs, (at Middlebank, and Hillhead Road), and cross the Ring of Gullion Waymarked Way. The proposed high off-road cycle and walking greenway to be developed along Middlebank would be indirectly impacted in terms of setting. Would impact on existing and proposed National Cycle Networks / Sustrans proposals. No known equestrian facilities would be directly affected. Would impact on the setting/amenity of the Ship Canal as an angling facility. Likely significant reduction in traffic on Kilmorey Street and overall reduction in rat-running.	N/A (Qualitative Ass	sessment Only)				Slight Adverse – Slight Beneficial
	Accidents	Significant savings in the number of accidents and the number of serious and slight casualties due to the provision of a Newry Southern Relief Road to remove traffic from the heavily trafficked	Growth	Accidents	Deaths	Serious	Slight	Accidents PVB (RTF 2015 Growth)
OCIAL	Accidents	junctions on the urban road network within Newry City Centre, based on the application of national accident characteristics.	RTF 2015 Growth	140.9	-0.2	13.7	161.9	£4.918m
JUIAL	Community Severance	Significant volumes of traffic would continue to be drawn into the city from all directions; however the relief of some of the traffic on the urban road network may improve access to community facilities, with a possible reduction in vehicular/pedestrian conflict due to the slight easing of congestion. The benefit of relieving some traffic and slight easing of congestion may also be experienced throughout the wider network of urban roads which have become heavily used routes by traffic wishing to avoid/bypass the congested areas. Not only may this lead to improved access to community facilities throughout the wider urban area, but also partially reduce the degree of community severance. It may also serve to encourage journeys into the city to ads.	N/A (Qualitative Ass	sessment Only)				Slight Beneficial
	Access to Public Transport	Access to the local road network would be maintained for local Ulsterbus services linking the surrounding towns and villages. The route would likely result in reduction in delays for public transport services through separation of local and strategic traffic to a certain degree.	N/A (Qualitative Ass	sessment Only)				Slight Beneficial

Newry Southern Relief Road - Red Route **Description** – A 4.00km S2/Wide Single Carriageway Climbing Lane Section links the A2 Warrenpoint Road to the A1/N1 Belfast Dublin Corridor. **Main Constraints –** The majority of traffic currently passing through Newry converges in the centre of the city, resulting in considerable congestion.

Objective	Sub-Objective	Qualitative Impacts	Quantitative Assessment	Assessment
		There would be no long-term impact upon rail services.		
	Transport Interchange	As a long-term strategic road improvement to link from the A1 Dublin Road (a key strategic route), to the A2 Warrenpoint Road (a trunk road leading to Warrenpoint Port) the provision of a relief road to the south of Newry would provide an obvious benefit to the transport interchanges, particularly with regards to the potential for removal of a significant proportion of port-related HGV movements from the city centre road network. A maximum gradient of 6% occurs for approximately 0.3km. A significant cut from the proposed Fathom Line Roundabout to approximate chainage 0+400m would potentially require rock blasting. Significant works would be required to upgrade Flagstaff Road as the proposed route would not provide adequate clearance. This would involve raising Flagstaff Road considerably.	N/A (Qualitative Assessment Only)	Slight -Moderate Beneficial
	Land-Use Planning	Conforms to policies in the RDS, RTS and RSTNTP. Specifically, the route would help achieve the strategic aims of the RDS (2035) and conforms to its specific regional guidance; to deliver a balanced approach to transport infrastructure. The route would help maximise the potential of the RSTN, by removing bottlenecks on the key road network where lack of capacity is causing congestion and improving the environment by providing bypasses, relieving the effects of heavy through traffic. The scheme is part of the Strategic Road Improvement Programme, and is currently in Dfl's 10 year Forward Planning Schedule, as of April 2015. Extensive woodland loss.	N/A (Qualitative Assessment Only)	Moderate Adverse - Moderate Beneficial
	Other Government Policies	The scheme is supported by proposals contained within the Banbridge/Newry and Mourne Area Plan 2015 and the Newry City Masterplan, which in turn are largely in conformance with other Government Department Objectives for integrated transport.	N/A (Qualitative Assessment Only)	Moderate Beneficial
PUBLIC ACCOUNTS	Affordability		·	(Excl. Optimism Bias) – £83.201m (Incl. 36.3% OB) – £113.404m

Project number: 60472927

Newry Southern Relief Road - Yellow Route **Description** – A 5.30km S2/Wide Single Carriageway Climbing Lane Section links the A2 Warrenpoint Road to the A1/N1 Belfast Dublin Corridor.

Main Constraints – The majority of traffic currently passing through Newry converges in the centre of the city, resulting in considerable congestion.

Objective	Sub-Objective	Qualitative Impacts	Quantitative	Assessment				Assessment
		Yellow Route is forecasted to have a beneficial local air quality effect by removing a proportion of traffic, (particularly HDVs) from the city centre, leading to less congestion and reduced pollution. Two existing AQMAs would be indirectly affected as a result of removal of	Number of prop	perties within 200n	n of indicative alig	nment centreline:		
	Air Quality	some strategic traffic from the city. However, the change would likely not be significant enough to result in the AQMAs being revoked. In terms of sensitive vegetation, the Yellow Route would impact on some areas.	Centreline – 50m	50-100m	100-150m	150-200m	Total	Slight Adverse – Slight Beneficial
		NO ₂ and PM ₁₀ levels at each assessed receptor would be 'Well Below' the NAQS limit values and the significance of effect in all cases would be Negligible, irrespective of the absolute adverse or beneficial change concentrations. The route would however result in an increase in regional emissions.	15 10 14		9	48		
		Yellow Route has the possibility of impacting upon a 1600's battle site (ARM029:042), four tree ring sites in Fathom Lower (ARM029:020; ARM029:021; ARM029:022; ARM029:023), the	12 low value as qualitative impa		risk of direct physic	cal impact, as deta	iled under	
NVIRONMENT	Cultural Heritage	former lines of the Industrial Heritage Record GNR Branch Line from Goraghwood to Warrenpoint (00478) and the Newry and Greenore Railway (00538), ancient woodland (WT896) and long-established woodland (WT895, WT943 & WT940), whilst also crossing the	areas of palaeo	unknown value wo environmental po ver crossing could	rmer Wellington	Large Adverse		
		boundaries between the townland of Cloghogue with Fathom Upper. The crossing of the Newry River may also impact upon shipwrecks in the river and upon the setting of the Newry Ship Canal (especially Victoria Lock); the bridge carrying the Barracric Road over the Belfast-Dublin railway line; and Fathom House & its associated Belvedere Tower.	assets, includin (and associated House), the hig undated enclos	Iso has the potent g the Newry Ship d B1 listed gates a h value B2 listed I ure or 'fort' in Fatt urrow Water (WT9	acred Heart arochial e low value	Large Adverse		
Fecology & Nature Ca es Ecology & Nature Conservation ag ag im		Carlingford Shore SAC is approximately 0.5km south-east of the Yellow Route. A bridge approximately 285m long would traverse Carlingford Lough ASSI. Piers would be required through the estuarine sediments. Habitat connectivity between Fathom Upper ASSI and Fathom Lower Woods & Grasslands SLNCI would be fragmented. The Yellow Route would have major direct impacts on several SLNCIs (including significant adverse impacts upon ancient and long-established woodland). This route also traverses agricultural land with numerous hedgerows. As Priority Habitat and important wildlife corridors, hedgerow loss would be detrimental, causing habitat fragmentation for local wildlife.	N/A (Qualitative Ass	sessment Only)		Large Adverse		

Project number: 60472927

Newry Southern Relief Road - Yellow Route **Description** – A 5.30km S2/Wide Single Carriageway Climbing Lane Section links the A2 Warrenpoint Road to the A1/N1 Belfast Dublin Corridor.

Main Constraints – The majority of traffic currently passing through Newry converges in the centre of the city, resulting in considerable congestion.

Objective	Sub-Objective	Qualitative Impacts	Quantitative Assessment	Assessment
	Landscape Effects	Slight encroachment into Mourne AONB, though the route would have a significant impact on the Ring of Gullion AONB, resulting in significant loss of mature woodland vegetation in combination with major earthworks on the western valley side. However, the road would follow contours as much as possible. Would however require the removal of large areas of long-established woodland as well as sections of ancient woodland. The bridge crossing would potentially divide the river basin and indeed the overall river valley into two parts by creating a strong visual and physical barrier when viewed from the A2. River valley bridge location of the Yellow Route would take advantage of a natural narrowing of Newry River resulting in a shorter bridge. While it would still divide the valley into two parts, it could be integrated better into the overall valley environs. The limited number of receptors would minimise visual impacts over this section of the route.	N/A (Qualitative Assessment Only)	Landscape Large Adverse to Very Large Adverse Visual Moderate Adverse to Large Adverse
	Land Use	Would not encroach into the settlement development limit as designated in the Banbridge / Newry & Mourne Area Plan 2015. Would marginally encroach into Narrow Water Forest SLNCI, but cause no severance. Would encroach into and sever the most southerly (and by far the largest) of the three parcels associated with Fathom Lower Woods & Grasslands SLNCI, resulting in significant losses from this zoned area and a significant impact upon its nature conservation, setting and amenity value. All route options would	Seven properties at risk of demolition (including five residential properties and two commercial properties). Seven residential properties and one community property at risk of private land loss, all being subject to minor impacts.	Slight Adverse - Large Adverse
		traverse a similar length of agricultural land. Would not affect any designated Community areas or facilities, however it may affect publically accessible woodland at Fathom Forest. Would have by far the greatest impact on Forest Service woodlands and long-established/ancient woodland. Would impact the greatest amount of non-Forest Service woodland. Would include a bascule bridge to negate any restriction on ship passage.	Seven planning applications at risk of direct impacts. For those that are still extant, the impact would be minor.	
	Noise & Vibration	Would have the lowest number of receptors, both within 50m, (the zone where noise levels would be greatest), and within 300m. Would require a significant degree of earthworks (cutting and embankments) and bridge works, though as it is not located close to the more populous part of Newry, this would be preferred.	When comparing the Do-Minimum in the Baseline Year (year of opening) with the Do-Something in the Future Year (15th Year) for the Yellow Route, 64 properties would experience a less than 10% increase in noise nuisance. 7 would experience a 10-20% increase in noise nuisance. Under this scenario, it is predicted that the 68 dB L _{A10, 18hr} value would be exceeded at 7 properties under the 'Do-Something' scenario. It is noted that 6 of these properties would exceed this value under the 'Do-Minimum' scenario due to the existing road network.	Slight Adverse – Large Adverse

Project number: 60472927

Newry Southern Relief Road - Yellow Route

Description – A 5.30km S2/Wide Single Carriageway Climbing Lane Section links the A2 Warrenpoint Road to the A1/N1 Belfast Dublin Corridor.

Total Scheme Cost (Excl. **Main Constraints –** The majority of traffic currently passing through Newry converges in the centre of the city, resulting in considerable congestion.

Optimism Bias) – £77.241m Total Scheme Cost (Incl. Optimism Bias) – £105.279m

Objective	Sub-Objective	Qualitative Impacts	Quantitative Assessment		Assessment	
			There are 17 properties which would be expo outside under the 'Do-Something' scenario in th			
	Vehicle Travellers	New and interesting views would be opened-up. Currently, driver stress levels through the affected road network of Newry are considered to be 'High', and would be expected to reduce on completion of the scheme.	N/A (Qualitative Assessment Only)		Views : Moderate E Driver Stress: Mode	
	Road Drainage & the Water Environment	Would not directly affect any designated or known shellfishery beds but would be located in closest proximity to them at Narrow Water. It would also directly affect Carlingford Lough ASSI. Bridge crossing point and alignment would increase the potential for establishment of preferential pathways and sediment release. Would not be located within the Q_{100} river and surface water floodplain associated with the Newry River or the Q_{200} Sea Floodplain associated with the Newry Estuary. The feeder stream to Bensons Glen Fish Hatchery would be directly affected.	N/A (Qualitative Assessment Only)		Moderate Adverse	
	Would potentially have a greater impact or rural location and overall length. Would p	Would potentially have a greater impact on soils as a result of its rural location and overall length. Would potentially have a lower potential impact on contaminated soils/groundwater.	N/A (Qualitative Assessment Only)		Slight Adverse	
			For the Opening Year:	RTF 2015 Growth	TEE (RTF 2015 Gr	owth)
			Total Vehicle-Hours Saved (Two-Way):	174,000	Consumer PVB:	£58.459m
				8.5 mins saved on strategic route	Business PVB:	£33.292m
				Warrenpoint to / from	Private PVB:	£0.430m
CONOMY	Transport Economic			Carrickcarnan 2.8 mins saved on strategic route	ITR PVB:	-£3.619m
	Efficiency		Average Journey Time Change (Mins/Veh):	Warrenpoint to / from Camlough 5.7 mins saved on strategic route Warrenpoint to / from Carnbane	Emissions PVB:	£0.594m
				3.6 mins saved on strategic route Warrenpoint to / from Sheepbridge 1.2 mins saved on strategic route	Government Funding PVC:	£55.021m
				Greenbank Rbt to / from	Overall PVB	£92.269m
			Carrickcarnan	Overall PVC	£55.573m	

Project number: 60472927

Newry Southern Relief Road - Yellow Route

Description – A 5.30km S2/Wide Single Carriageway Climbing Lane Section links the A2 Warrenpoint Road to the A1/N1 Belfast Dublin Corridor. **Main Constraints** – The majority of traffic currently passing through Newry converges in the centre of the city, resulting in considerable congestion.

Objective	Sub-Objective	Qualitative Impacts	Quantitative	Assessment				Assessment				
							on strategic route	NPV	£36.696m			
						City Centre to / fr	om Carrickcarnan	BCR 1.660				
	Reliability	Improved journey time reliability through the provision of a Newry Southern Relief Road to address acknowledged operational congestion through Newry City Centre.	N/A – Qualitativ	ve Assessment O	nly							
	Pedestrians, Cyclists & Equestrians	 Would potentially affect two alleged PROWs, (at Middlebank, and Hillhead Road), and cross the Ring of Gullion Waymarked Way. The proposed high off-road cycle and walking greenway to be developed along Middlebank would be indirectly impacted in terms of setting. Would impact on existing and proposed National Cycle Networks / Sustrans proposals. No known equestrian facilities would be directly affected. Would impact on the setting/amenity of the Ship Canal as an angling facility. Likely significant reduction in traffic on Kilmorey Street and overall reduction in rat-running. 	N/A (Qualitative As	sessment Only)				Slight Adverse – Slight Beneficial				
		Significant savings in the number of accidents and the number of	Growth	Accidents	Deaths	Serious	Slight	Accidents PVB (F	RTF 2015 Growth)			
SOCIAL	Accidents	serious and slight casualties due to the provision of a Newry Southern Relief Road to remove traffic from the heavily trafficked junctions on the urban road network within Newry City Centre, based on the application of national accident characteristics.	RTF 2015 Growth	102.4	-0.6	8.1	115.4	£3.114m				
	Community Severance	Significant volumes of traffic would continue to be drawn into the city from all directions; however the relief of some of the traffic on the urban road network may improve access to community facilities, with a possible reduction in vehicular/pedestrian conflict due to the slight easing of congestion. The benefit of relieving some traffic and slight easing of congestion may also be experienced throughout the wider network of urban roads which have become heavily used routes by traffic wishing to avoid/bypass the congested areas. Not only may this lead to improved access to community facilities throughout the wider urban area, but also partially reduce the degree of community severance. It may also serve to encourage journeys into the city by those previously deterred by the high levels of traffic on the city roads.	N/A (Qualitative Assessment Only)					Slight Beneficial				
	Access to Public Transport	Access to the local road network would be maintained for local Ulsterbus services linking the surrounding towns and villages. The Route would likely result in reduction in delays for public transport	N/A (Qualitative Assessment Only)				Slight Beneficial					

Project number: 60472927

Newry Southern Relief Road - Yellow Route **Description** – A 5.30km S2/Wide Single Carriageway Climbing Lane Section links the A2 Warrenpoint Road to the A1/N1 Belfast Dublin Corridor.

Main Constraints – The majority of traffic currently passing through Newry converges in the centre of the city, resulting in considerable congestion.

Objective	Sub-Objective	Qualitative Impacts	Quantitative Assessment	Assessment		
		services through separation of local and strategic traffic to a certain degree. There would be no long-term impact upon rail services.				
	Transport Interchange	As a long-term strategic road improvement to link from the A1 Dublin Road (a key strategic route), to the A2 Warrenpoint Road (a trunk road leading to Warrenpoint Port) the provision of a relief road to the south of Newry would provide an obvious benefit to the transport interchanges, particularly with regards to the potential for removal of a significant proportion of port-related HGV movements from the city centre road network. A maximum gradient of 6% occurs for approximately 0.4km. An extremely large cut from the proposed Fathom Line Roundabout would require rock blasting.	N/A (Qualitative Assessment Only)	Slight Beneficial		
		Significant works would be required to upgrade Flagstaff Road as the proposed route would not provide adequate clearance. This would involve raising Flagstaff Road considerably.	ate clearance. This would			
	Land-Use Planning	Conforms to policies in the RDS, RTS and RSTNTP. Specifically, the route would help achieve the strategic aims of the RDS (2035) and conforms to its specific regional guidance; to deliver a balanced approach to transport infrastructure. The route would help maximise the potential of the RSTN, by removing bottlenecks on the key road network where lack of capacity is causing congestion and improving the environment by providing bypasses, relieving the effects of heavy through traffic. The scheme is part of the Strategic Road Improvement Programme, and is currently in Dfl's 10 year Forward Planning Schedule, as of April 2015. Extensive woodland loss.	ic aims of the RDS (2035) and ance; to deliver a balanced The route would help maximise ng bottlenecks on the key road using congestion and improving es, relieving the effects of heavy the Strategic Road rently in Dfl's 10 year Forward			
	Other Government Policies	The scheme is supported by proposals contained within the Banbridge/Newry and Mourne Area Plan 2015 and the Newry City Masterplan, which in turn are largely in conformance with other Government Department Objectives for integrated transport.	N/A (Qualitative Assessment Only)	Moderate Beneficial		
PUBLIC ACCOUNTS	Affordability			(Excl. Optimism Bias) – £77.241m (Incl. 36.3% OB) – £105.279m		

Newry Southern Relief Road – Blue Route Option 1

Description – A 3.20km S2/Wide Single Carriageway Climbing Lane Section links the A2 Warrenpoint Road to the A1/N1 Belfast Dublin Corridor.

Total Scheme Cost (Excl. Main Constraints – The majority of traffic currently passing through Newry converges in the centre of the city, resulting in considerable congestion.

Optimism Bias) – £40.269m Total Scheme Cost (Incl. Optimism Bias) – £54.887m

								Optimism Bias) – £54.887m
Objective	Sub-Objective	Qualitative Impacts	Quantitative /	Assessment				Assessment
		Blue Route Option 1 is forecasted to have a beneficial local air quality effect by removing a proportion of traffic (particularly HDVs) from the city centre, leading to less congestion and reduced pollution. Two existing AQMAs would be indirectly affected as a result of removal of some strategic traffic from the city. However, the change would likely not be significant enough to result in the AQMAs being revoked. The route option would have minimal perceptible impact upon designated ecological sites. NO ₂ and PM ₁₀ levels at each assessed receptor would be 'Well Below' the NAQS limit values and the significance of effect in all cases would be Negligible, irrespective of the absolute adverse or beneficial change concentrations. The route option would also result in a decrease in regional emissions.	Number of prope	erties within 200m	of indicative align	ment centreline:		
	Air Quality		Centreline – 50m	50-100m	100-150m	150-200m	Total	Slight Adverse – Slight Beneficial
			18	8	30	51	107	
		Blue Route Option 1 has the possibility of impacting upon historic woodland, a 'record-only' Belvedere Tower (HB16/13/009) associated with Ashton House, the former lines of the Industrial Heritage Record GNR Branch Line from Goraghwood to	Four low value a qualitative impac		risk of direct phys	ical impact as deta	ailed under	
ENVIRONMENT			Three assets of unknown value would be at risk of direct physical impact including a possible area of complex field boundaries, areas of palaeoenvironmental potential, the possible site of a 19th Century building, Wellington Inn and previously unrecorded archaeological features and deposits within greenfield areas.					Large Adverse
	Cultural Heritage	Lower. It could also impact upon the settings of the scheduled Newry Canal; the bridge carrying the Barracric Road over the Belfast- Dublin railway line; Fathom House & its associated Belvedere Tower, and the listed church at Cloghogue.	heritage assets, Heart (and asso House); the high Belvedere Towe Industrial Heritag is also a Record	including the New ciated B1 listed ga value B1 listed F r; the low value R ge Record railway	rry Ship Canal; the ates and walling an athom House and ecord-Only Ashtor bridge on the GN	upon the setting o e B+ listed Church o dits non-designat its associated high h House (HB16/13/ R Main Line (00062 3); and ancient woo	of the Sacred ed Parochial n value B2 listed 028); the 2:102:00) which	Large Adverse
	Ecology & Nature Conservation	Nature The perthern mest and central parcels of the Fethem Lewer Woods		N/A (Qualitative Assessment Only)				Large Adverse
		Option 1 would have a major impact on the woodland habitat as it would traverse long-established woodland and adjoining undesignated woodland within the central section of Fathom Lower Woods & Grassland SLNCI (Benson's Glen), leading to						

Newry Southern Relief Road – Blue	
Route Option 1	

Description – A 3.20km S2/Wide Single Carriageway Climbing Lane Section links the A2 Warrenpoint Road to the A1/N1 Belfast Dublin Corridor. Main Constraints – The majority of traffic currently passing through Newry converges in the centre of the city, resulting in considerable congestion.

bjective	Sub-Objective	Qualitative Impacts	Quantitative Assessment	Assessment
		irreplaceable loss of long-established woodland habitat. Additionally, this would fragment this SLNCI. Significant fragmentation would prevent movement of species across the landscape. This route also traverses agricultural land with numerous hedgerows. As Priority Habitat and important wildlife corridors, hedgerow loss would be detrimental, causing habitat fragmentation for local wildlife.		
	Landscape Effects	The river bridge location of Blue Route Option 1 within Greenbank Industrial Estate would likely become a gateway / landmark between the city and the river valley further south-east due to its required high clearing between the bridge and Newry River / Canal. Considering its location within the urban and light industrial southern fringe of Newry, the development would be able to integrate into its urban / light industrial context and would not detract considerably from the overall character in the area Whilst Blue Route Option 1 would have major landscape and visual effects due to significant sections of cut & fill, it has the highest potential to integrate into the environment as it is located in an area of transition between the sub-urban end of Newry and the rural and wooded parts of the river valley. Blue Route Option 1 would have the least amount of embankments facing east towards the Newry River valley when compared with Blue Route Options 2 and 3. Of all Blue Route options, it would result in the greatest amount of sensitive woodland loss and would traverse the LLPA NY114 Newry Canal / River.	N/A (Qualitative Assessment Only)	Landscape Moderate Adverse to Large Adverse Visual Moderate Adverse to Large Adverse
		Would encroach into the settlement development limit as designated in the Banbridge / Newry & Mourne Area Plan 2015, notably affecting a major area of existing open space, effectively resulting in its loss and functionality from a community / recreational perspective (Gerry Brown Park). Would also split an existing area of economic development associated with Greenbank Industrial Estate, however would result in no loss of land from this zoned area	Eight properties at risk of demolition, including five residential properties, one community property and two commercial properties.	
	Land Use	(may also improve access). Would directly affect the Newry Canal/River LLPA (NY 114). Would marginally encroach into the most northerly of the three parcels associated with Fathom Lower Woods & Grasslands SLNCI and would also encroach into and sever the central parcel of this SLNCI (Benson's Glen) (including the loss of long-established woodland). All route options would traverse a similar length of agricultural land. Does not include a bascule bridge over the canal at this stage, creating a potential restriction or obstacle to passage for tall ships.	Seven residential properties at risk of private land loss, with one being subject to moderate adverse impacts and the remainder subject to minor impacts. Six planning applications at risk of direct impacts. For those that are still extant, the impact would be minor.	Slight Adverse – Large Adverse

Newry Southern Relief Road – Blue Route Option 1 **Description** – A 3.20km S2/Wide Single Carriageway Climbing Lane Section links the A2 Warrenpoint Road to the A1/N1 Belfast Dublin Corridor. **Main Constraints –** The majority of traffic currently passing through Newry converges in the centre of the city, resulting in considerable congestion.

Optimism Bias) – £40.269m Total Scheme Cost (Incl. Optimism Bias) – £54.887m

Total Scheme Cost (Excl.

					Optimism Blas)	- £54.887M
bjective	Sub-Objective	Qualitative Impacts	Quantitative Assessment		Assessment	
	Noise & Vibration	Would have the third highest number of receptors, both within 50m, (the zone where noise levels would be greatest), and within 300m. These are primarily highly sensitive residential receptors. In terms of road gradient, steepest gradient (6%), over the second longest distance. The longer the length of road at this gradient; the higher the potential there is for adverse noise impacts. Would require a significant degree of earthworks (cutting and embankments) and bridge works.	When comparing the Do-Minimum in the Bass Something in the Future Year (15th Year) for experience a less than 10% increase in noise increase in noise nuisance and 5 would exper Under this scenario, it is predicted that the 68 7 properties under the 'Do-Something' scenar would exceed this value under the 'Do-Minimu network. There are 17 properties which would be expo under the 'Do-Something' scenario in the Futu	 Blue Route Option 1, 59 properties would nuisance. 8 would experience a 10-20% rience no change. dB L_{A10, 18hr} value would be exceeded at rio. It is noted that 6 of these properties um' scenario due to the existing road sed to levels in excess of 55 dB L_{night, outside} 	Neutral – Large Ad	verse
	Vehicle Travellers	New and interesting views would be opened-up. Currently, driver stress levels through the affected road network of Newry are considered to be 'High', and would be expected to reduce on completion of the scheme.	N/A (Qualitative Assessment Only)	Views : Moderate Beneficial Driver Stress: Moderate Beneficial		
	Road Drainage & the Water Environment	Would not directly affect any designated or known shellfishery beds, nor would it directly affect Carlingford Lough ASSI. Bridge crossing point and alignment would minimise the potential for establishment of preferential pathways and sediment release. Would be located within the Q ₁₀₀ floodplain. The feeder stream to Bensons Glen Fish Hatchery would be directly affected.	N/A (Qualitative Assessment Only)		Slight Adverse	
Geo	Geology & Soils	Would potentially have less impact on soils as a result of its being partially within urban and disturbed soil types and shorter overall length. However, its partial location within the urban area would increase the potential to encounter contaminated soils/groundwater (particularly within Greenbank Industrial Estate).	N/A (Qualitative Assessment Only)	Slight Adverse		
			For the Opening Year:	RTF 2015 Growth	TEE (RTF 2015 Gr	owth)
CONOMY	Transport Economic	Significantly reduced peak and off-peak journey times on the road network in the 2023 year of opening compared to existing routes by	Total Vehicle-Hours Saved (Two-Way):	174,000	Consumer PVB:	£53.943m
	Efficiency	avoiding the congested urban road network within Newry City Centre.	Average Journey Time Change	7.1 mins saved on strategic route Warrenpoint to / from Carrickcarnan	Business PVB:	£31.255m
			(Mins/Veh):	Private PVB:	£0.264m	

Newry Southern Relief Road – Blue Route Option 1 **Description** – A 3.20km S2/Wide Single Carriageway Climbing Lane Section links the A2 Warrenpoint Road to the A1/N1 Belfast Dublin Corridor. **Main Constraints** – The majority of traffic currently passing through Newry converges in the centre of the city, resulting in considerable congestion.

								, ,		
Objective	Sub-Objective	Qualitative Impacts	Quantitativ	e Assessment				Assessment		
						1.4 mins saved on		ITR PVB:	-£1.069m	
						Warrenpoint to / fro 4.3 mins saved on	strategic route	Emissions PVB:	£0.184m	
						Warrenpoint to / fro 2.2 mins saved on Warrenpoint to / fro	strategic route	Government Funding PVC:	£28.688m	
						5.3 mins saved on Greenbank Rbt to /	strategic route	Overall PVB	£89.098m	
						Carrickcarnan		Overall PVC	£29.165m	
						1.1 mins saved on Centre to / from Ca		NPV	£59.924m	
								BCR	3.055	
	Reliability	Improved journey time reliability through the provision of a Newry Southern Relief Road to address acknowledged operational congestion through Newry City Centre.	N/A – Qualita	tive Assessment On	ly					
	Pedestrians, Cyclists & Equestrians	yclists & Sustrans proposals.					Slight Adverse – Sl	ight Beneficial		
		Significant savings in the number of accidents and the number of	Growth	Accidents	Deaths	Serious	Slight	Accidents PVB (R	TF 2015 Growth	
OCIAL	Accidents	serious and slight casualties due to the provision of a Newry Southern Relief Road to remove traffic from the heavily trafficked junctions on the urban road network within Newry City Centre, based on the application of national accident characteristics.	RTF 2015	127.8	-0.1	12.7	147.0	£4.513m		
	Community Severance	Significant volumes of traffic would continue to be drawn into the city from all directions; however the relief of some of the traffic on the urban road network may improve access to community facilities, with a possible reduction in vehicular/pedestrian conflict due to the slight easing of congestion. The benefit of relieving some traffic and slight easing of congestion may also be experienced throughout the wider network of urban roads which have become heavily used routes by traffic wishing to avoid/bypass the congested areas. Not only may this lead to improved access to community facilities throughout the wider urban area but also partially reduce the degree of community severance. It	N/A (Qualitative A	ssessment Only)				Slight Beneficial		

Newry Southern Relief Road – Blue Route Option 1 **Description** – A 3.20km S2/Wide Single Carriageway Climbing Lane Section links the A2 Warrenpoint Road to the A1/N1 Belfast Dublin Corridor. Main Constraints – The majority of traffic currently passing through Newry converges in the centre of the city, resulting in considerable congestion.

				Optimism Blas) – £54.887m
Objective	Sub-Objective	Qualitative Impacts	Quantitative Assessment	Assessment
		may also serve to encourage journeys into the city by those previously deterred by the high levels of traffic on the city roads.		
	Access to Public Transport	Access to the local road network would be maintained for local Ulsterbus services linking the surrounding towns and villages. The Route would likely result in reduction in delays for public transport services through separation of local and strategic traffic to a certain degree. There would be no long-term impact upon rail services.	N/A (Qualitative Assessment Only)	Slight Beneficial
	Transport Interchange	As a long-term strategic road improvement to link from the A1 Dublin Road (a key strategic route), to the A2 Warrenpoint Road (a trunk road leading to Warrenpoint Port) the provision of a relief road to the south of Newry would provide an obvious benefit to the transport interchanges, particularly with regards to the potential for removal of a significant proportion of port-related HGV movements from the city centre road network. A maximum gradient of 6% occurs for approximately 1.4km. A significant cut along the Fathom Line connector could potentially require blasting. Similarly, a significant cut, crossing Flagstaff Road may require blasting. This cut would however provide sufficient clearance for an overbridge at Flagstaff Road.	N/A (Qualitative Assessment Only)	Moderate Beneficial
	Land-Use Planning	Conforms to policies in the RDS, RTS and RSTNTP. Specifically the route would help achieve the strategic aims of the RDS (2035) and conforms to its specific regional guidance; to deliver a balanced approach to transport infrastructure. The route would help maximise the potential of the RSTN, by removing bottlenecks on the key road network where lack of capacity is causing congestion and improving the environment by providing bypasses, relieving the effects of heavy through traffic. The scheme is part of the Strategic Road Improvement Programme, and is currently in Dfl's 10 year Forward Planning Schedule, as of April 2015.	N/A (Qualitative Assessment Only)	Slight Adverse - Moderate Beneficial
	Other Government Policies	The scheme is supported by proposals contained within the Banbridge/Newry and Mourne Area Plan 2015 and the Newry City Masterplan, which in turn are largely in conformance with other Government Department Objectives for integrated transport.	N/A (Qualitative Assessment Only)	Moderate Beneficial
PUBLIC ACCOUNTS	Affordability		·	(Excl. Optimism Bias) – £40.269m (Incl. 36.3% OB) – £54.887m

Newry Southern Relief Road – Blue Route Option 2

Description – A 3.00km S2/Wide Single Carriageway Climbing Lane Section links the A2 Warrenpoint Road to the A1/N1 Belfast Dublin Corridor.

Total Scheme Cost (Excl. **Main Constraints –** The majority of traffic currently passing through Newry converges in the centre of the city, resulting in considerable congestion.

Optimism Bias) – £53.177m Total Scheme Cost (Incl. Optimism Bias) – £72.481m

					0			Optimism Bias) – £72.481m
Objective	Sub-Objective Qualitative Impacts Quantitative Assessment						Assessment	
		Blue Route Option 2 is forecasted to have a beneficial local air quality effect by removing a proportion of traffic (particularly HDVs) from the city centre, leading to less congestion and reduced pollution. Two existing AQMAs would be indirectly affected as a	Number of prop	erties within 200m	of indicative align	ment centreline:		
	Air Quality	result of removal of some strategic traffic from the city. However, the change would likely not be significant enough to result in the AQMAs being revoked. The route option would have no perceptible impact upon designated ecological sites. NO ₂ and PM ₁₀ levels at each assessed receptor would be 'Well Below' the NAQS limit values and the significance of effect in all cases would be Negligible, irrespective of the absolute adverse or beneficial change concentrations. The route option would also result in a decrease in regional emissions.	Centreline – 50m	50-100m	100-150m	150-200m	Total	Slight Adverse – Slight Beneficial
			16	11	29	52	108	
		Blue Route Option 2 has the possibility of impacting upon a record- only Belvedere Tower (HB16/13/009) associated with Ashton House; the former lines of the Industrial Heritage Record GNR Branch Line from Goraghwood to Warrenpoint (00478) and the Newry and Greenore Railway (00538); and the boundary between	Four low value a qualitative impa		t risk of direct phys	ical impact, as deta	ailed under	
ENVIRONMENT	Cultural Heritage		possible area of possible site of	unknown value w f complex field bou a 19th Century bu features and depo	Large Adverse			
		the townlands of Cloghogue and Fathom Lower. It could also impact upon the settings of the scheduled Newry Canal; the bridge carrying the Barracric Road over the Belfast- Dublin railway line; Fathom House and its associated Belvedere Tower; and the listed church at Cloghogue.	heritage assets, Heart (and asso House); the high Belvedere Towe Industrial Herita	, including the Nev ociated B1 listed ga h value B1 listed F er; the low value R age Record railway d-Only Historic Bui	vry Ship Canal; the ates and walling ar athom House and ecord-Only Ashtor bridge on the GNI	upon the setting o B+ listed Church o d its non-designat- its associated high House (HB16/13// R Main Line (00062 3) and ancient woo	of the Sacred ed Parochial value B2 listed 028); the 2:102:00) which	
	Ecology &	Blue Route Option 2 would not directly affect Carlingford Lough ASSI, though would cross the Newry River and canal requiring several bridge piers within the wider channel. The bridging point would also likely affect the scrub habitat, riparian corridor on the canal and intertidal river bank habitat causing fragmentation.	N/A					
	Nature Conservation	Does not traverse Fathom Lower Woods & Grassland SLNCI, though passes in close proximity to it, affecting undesignated woodland fringe habitat, leaving the remaining woodland habitat more exposed to disturbance and lead to significant habitat fragmentation. This route also traverses agricultural land with numerous hedgerows. As Priority Habitat and important wildlife	(Qualitative Ass	sessment Only)				Moderate Adverse

Newry Southern Relief Road – Blue Route Option 2 **Description** – A 3.00km S2/Wide Single Carriageway Climbing Lane Section links the A2 Warrenpoint Road to the A1/N1 Belfast Dublin Corridor. **Main Constraints** – The majority of traffic currently passing through Newry converges in the centre of the city, resulting in considerable congestion.

				Optimism Blas) – ± 12.46 m	
Objective	Sub-Objective	Qualitative Impacts	Quantitative Assessment	Assessment	
		corridors, hedgerow loss would be detrimental, causing habitat fragmentation for local wildlife.			
	Landscape Effects	The river bridge location of Blue Route Option 2 within Greenbank Industrial Estate would likely become a gateway / landmark between the city and the river valley further south-east due to its required high clearing between the bridge and Newry River / Canal. Considering its location within the urban and light industrial southern fringe of Newry, the development would be able to integrate into its urban / light industrial context and would not detract considerably from the overall character in the area. Would traverse the LLPA NY114 Newry Canal / River.	N/A (Qualitative Assessment Only)	Landscape Moderate Adverse to Large Adverse Visual	
		Whilst Blue Route Option 2 would have major landscape and visual effects due to significant sections of cut & fill, it has the potential to integrate into the environment as it is located in an area of transition between the sub-urban end of Newry and the rural and wooded parts of the river valley. Blue Route Option 2 would have extensive embankments facing east towards the Newry River valley when compared with Blue Route Options 1 and 3.		Moderate Adverse to Large Advers	
		Would encroach into the settlement development limit as designated in the Banbridge / Newry & Mourne Area Plan 2015, notably affecting a major area of existing open space effectively	Seven properties at risk of demolition, including five residential properties, one community property and one commercial property.		
	Land Use	resulting in its loss and functionality from a community/recreational perspective (Gerry Brown Park). Would also split an existing area of economic development associated with Greenbank Industrial Estate, however would result in no loss of land from this zoned area	Eight residential properties at risk of private land loss, with two being subject to moderate adverse impacts and the remainder subject to minor impacts.	Slight Adverse – Large Adverse	
		(may also improve access). Would directly affect the Newry Canal/River LLPA (NY 114). Would avoid direct encroachment into Fathom Lower Woods & Grasslands SLNCI. All route options would traverse a similar length of agricultural land. Does not include a bascule bridge over the canal at this stage, creating a potential restriction or obstacle to passage for tall ships.	Six planning applications at risk of direct impacts. For those that are still extant, the impact would be minor.	Slight Adverse – Large Adverse	

Newry Southern Relief Road – Blue Route Option 2

Description – A 3.00km S2/Wide Single Carriageway Climbing Lane Section links the A2 Warrenpoint Road to the A1/N1 Belfast Dublin Corridor. **Main Constraints –** The majority of traffic currently passing through Newry converges in the centre of the city, resulting in considerable congestion.

Optimism Bias) – £53.177m Total Scheme Cost (Incl. Optimism Bias) – £72.481m

Total Scheme Cost (Excl.

			5		Optimism Bias)	– £72.481m
Objective	Sub-Objective	Qualitative Impacts	Quantitative Assessment		Assessment	
	Noise & Vibration	Would have a comparatively high number of receptors, both within 50m, (the zone where noise levels would be greatest), and within 300m. These are primarily highly sensitive residential receptors. In terms of road gradient, steepest gradient (6%), over the second longest distance. The longer the length of road at this gradient; the higher the potential there is for adverse noise impacts. Would require a significant degree of earthworks (cutting and embankments) and bridge works.	When comparing the Do-Minimum in the Base Something in the Future Year (15th Year) for B experience a less than 10% increase in noise i increase in noise nuisance and 4 would experi Under this scenario, it is predicted that the 68 9 properties under the 'Do-Something' scenari would exceed this value under the 'Do-Minimu network. There are 18 properties which would be expos under the 'Do-Something' scenario in the Futu	Blue Route Option 2, 62 properties would nuisance. 6 would experience a 10-20% ience no change. dB L _{A10, 18hr} value would be exceeded at o. It is noted that 6 of these properties im' scenario due to the existing road	Neutral – Large Ad	verse
	Vehicle Travellers	New and interesting views would be opened-up. Currently, driver stress levels through the affected road network of Newry are considered to be 'High', and would be expected to reduce on completion of the scheme.	N/A (Qualitative Assessment Only)	Views : Moderate Beneficial Driver Stress: Moderate Beneficial		
	Road Drainage & the Water Environment	Would not directly affect any designated or known shellfishery beds, nor would it directly affect Carlingford Lough ASSI. Bridge crossing point and alignment would minimise the potential for establishment of preferential pathways and sediment release. Would be located within the Q ₁₀₀ floodplain. The feeder stream to Bensons Glen Fish Hatchery would be directly affected.	N/A (Qualitative Assessment Only)	Slight Adverse		
Geology & Soi	Geology & Soils	Would potentially have less impact on soils as a result of its being partially within urban and disturbed soil types and shorter overall length. However, its partial location within the urban area would increase the potential to encounter contaminated soils/groundwater (particularly within Greenbank Industrial Estate).	N/A (Qualitative Assessment Only)		Slight Adverse	
			For the Opening Year:	RTF 2015 Growth	TEE (RTF 2015 Gr	owth)
CONOMY	Transport	Significantly reduced peak and off-peak journey times on the road network in the 2023 year of opening compared to existing routes by	Total Vehicle-Hours Saved (Two-Way):	178,000	Consumer PVB:	£55.528m
CONOMY	Economic Efficiency	avoiding the congested urban road network within Newry City Centre.	Average Journey Time Change	7.2 mins saved on strategic route	Business PVB:	£32.104m
			(Mins/Veh):	Warrenpoint to / from Carrickcarnan	Private PVB:	£0.300m

Newry Southern Relief Road – Blue Route Option 2 **Description** – A 3.00km S2/Wide Single Carriageway Climbing Lane Section links the A2 Warrenpoint Road to the A1/N1 Belfast Dublin Corridor. **Main Constraints –** The majority of traffic currently passing through Newry converges in the centre of the city, resulting in considerable congestion.

Objective	Sub-Objective	Qualitative Impacts	Quantitative	Assessment				Assessment		
						1.6 mins saved on		ITR PVB:	-£1.539m	
						Warrenpoint to / fro 4.4 mins saved on	strategic route	Emissions PVB:	£0.259m	
						Warrenpoint to / fro 2.3 mins saved on Warrenpoint to / fro	strategic route	Government Funding PVC:	£37.880m	
						5.4 mins saved on Greenbank Rbt to	strategic route	Overall PVB	£91.270m	
						Carrickcarnan		Overall PVC	£38.328m	
						1.2 mins saved on Centre to / from Ca		NPV	£52.942m	
							BCR	2.381		
	Reliability	Improved journey time reliability through the provision of a Newry Southern Relief Road to address acknowledged operational congestion through Newry City Centre.	N/A – Qualitativ	e Assessment On	ly					
	Pedestrians, Cyclists & Equestrians	Would potentially affect one alleged PROW (at Middlebank) and cross the Ring of Gullion Waymarked Way. The proposed high off- road cycle and walking greenway to be developed along Middlebank would be indirectly impacted in terms of setting. Would impact on existing and proposed National Cycle Networks / Sustrans proposals. No known equestrian facilities would be directly affected. Would impact on the setting/amenity of the Ship Canal as an angling facility. Likely significant reduction in traffic on Kilmorey Street and overall reduction in rat-running.	N/A (Qualitative Ass	essment Only)			Slight Adverse – Slight Beneficial			
		Significant savings in the number of accidents and the number of	Growth	Accidents	Deaths	Serious	Slight	Accidents PVB (R	TF 2015 Growth	
OCIAL	Accidents	serious and slight casualties due to the provision of a Newry Southern Relief Road to remove traffic from the heavily trafficked junctions on the urban road network within Newry City Centre, based on the application of national accident characteristics.	RTF 2015	129.4	-0.1	13.0	149.1	£4.617m		
	Community Severance	Significant volumes of traffic would continue to be drawn into the city from all directions; however the relief of some of the traffic on the urban road network may improve access to community facilities, with a possible reduction in vehicular/pedestrian conflict due to the slight easing of congestion. The benefit of relieving some traffic and slight easing of congestion may also be experienced throughout the wider network of urban roads which have become heavily used routes by traffic wishing to avoid/bypass the congested areas. Not only may this lead to improved access to community facilities throughout the wider urban area but also partially reduce the degree of community severance. It	N/A (Qualitative Assessment Only)					Slight Beneficial		

Newry Southern Relief Road – Blue Route Option 2 **Description** – A 3.00km S2/Wide Single Carriageway Climbing Lane Section links the A2 Warrenpoint Road to the A1/N1 Belfast Dublin Corridor. Main Constraints – The majority of traffic currently passing through Newry converges in the centre of the city, resulting in considerable congestion.

			Ť	Optimism Bias) – £72.481m
bjective	Sub-Objective	Qualitative Impacts	Quantitative Assessment	Assessment
		may also serve to encourage journeys into the city by those previously deterred by the high levels of traffic on the city roads.		
	Access to Public Transport	Access to the local road network would be maintained for local Ulsterbus services linking the surrounding towns and villages. The Route would likely result in reduction in delays for public transport services through separation of local and strategic traffic to a certain degree. There would be no long-term impact upon rail services.	N/A (Qualitative Assessment Only)	Slight Beneficial
	Transport Interchange	As a long-term strategic road improvement to link from the A1 Dublin Road (a key strategic route), to the A2 Warrenpoint Road (a trunk road leading to Warrenpoint Port) the provision of a relief road to the south of Newry would provide an obvious benefit to the transport interchanges, particularly with regards to the potential for removal of a significant proportion of port-related HGV movements from the city centre road network. A maximum gradient of 6% occurs for approximately 1.6km. A significant cut along the Fathom Line connector could potentially require blasting. The route would result in a substantial embankment to the west of Fathom Line with slope lengths up to 70m. Flagstaff Road would require realignment in order to gain sufficient clearance for an overbridge.	N/A (Qualitative Assessment Only)	Moderate Beneficial
	Land-Use Planning	Conforms to policies in the RDS, RTS and RSTNTP. Specifically the route would help achieve the strategic aims of the RDS (2035) and conforms to its specific regional guidance; to deliver a balanced approach to transport infrastructure. The route would help maximise the potential of the RSTN, by removing bottlenecks on the key road network where lack of capacity is causing congestion and improving the environment by providing bypasses, relieving the effects of heavy through traffic. The scheme is part of the Strategic Road Improvement Programme, and is currently in Dfl's 10 year Forward Planning Schedule, as of April 2015.	N/A (Qualitative Assessment Only)	Slight Adverse - Moderate Beneficia
	Other Government Policies	The scheme is supported by proposals contained within the Banbridge/Newry and Mourne Area Plan 2015 and the Newry City Masterplan, which in turn are largely in conformance with other Government Department Objectives for integrated transport.	N/A (Qualitative Assessment Only)	Moderate Beneficial
PUBLIC ACCOUNTS	Affordability			(Excl. Optimism Bias) – £53.177m (Incl. 36.3% OB) – £72.481m

Newry Southern Relief Road – Blue Route Option 3

Description – A 3.00km S2/Wide Single Carriageway Climbing Lane Section links the A2 Warrenpoint Road to the A1/N1 Belfast Dublin Corridor.

Main Constraints – The majority of traffic currently passing through Newry converges in the centre of the city, resulting in considerable congestion. Total Scheme Cost (Excl. Optimism Bias) – £43.468m Total Scheme Cost (Incl. Optimism Bias) – £59.247m

Objective	Sub-Objective	Qualitative Impacts	Quantitative Assessment					Assessment
ENVIRONMENT		city centre, leading to less congestion and reduced pollution. Two existing AQMAs would be indirectly affected as a result of removal of some strategic traffic from the city. However, the change would likely not be significant enough to result in the AQMAs being revoked. The route	Number of properties within 200m of indicative alignment centreline:					
	Air Quality		Centreline – 50m	50-100m	100-150m	150-200m	Total	- Slight Adverse – Slight Beneficial
			16	11	29	52	108	
	Cultural Heritage		Five low value a qualitative impa		risk of direct physi	cal impact, as deta	iled under	
		Belvedere Tower (HB16/13/009) associated with Ashton House; the former lines of the Industrial Heritage Record GNR Branch Line from Goraghwood to Warrenpoint (00478) and the Newry and Greenore Railway (00538); and the boundary between the townlands of Cloghogue and Fathom Lower. It could also impact upon the settings of the scheduled Newry Canal; the bridge carrying the Barracric Road over the Belfast-Dublin railway line; Fathom House and its associated Belvedere Tower; and the listed church at Cloghogue.	Three assets of unknown value would be at risk of direct physical impact, including a possible area of complex field boundaries, areas of palaeoenvironmental potential, the possible site of a 19th Century building, Wellington Inn and previously unrecorded archaeological features and deposits within greenfield areas.					- Large Adverse
			Blue Route Option 3 also has the potential to impact upon the setting of a range of heritage assets, including the Newry Ship Canal; the B+ listed Church of the Sacred Heart (and associated B1 listed gates and walling and its non-designated Parochial House); the high value B1 listed Fathom House and its associated high value B2 listed Belvedere Tower; the low value Record-Only Ashton House (HB16/13/028); the Industrial Heritage Record railway bridge on the GNR Main Line (00062:102:00) which is also a Record-only Historic Building (HB16/13/013) and ancient woodland in Fathom Lower (WT940, WT943).					
	Ecology & Nature Conservation	Blue Route Option 3 would not directly affect Carlingford Lough ASSI, though would cross the Newry River and canal requiring several bridge piers within the wider channel. The bridging point would also likely affect the scrub habitat, riparian corridor on the canal and intertidal river bank habitat causing fragmentation. Does not traverse Fathom Lower Woods & Grassland SLNCI, though	N/A (Qualitative Assessment Only)				Moderate Adverse	
		passes in close proximity to it, affecting undesignated woodland fringe habitat, leaving the remaining woodland habitat more exposed to disturbance and lead to significant habitat fragmentation. This route also traverses agricultural land with numerous hedgerows. As Priority Habitat						

Newry Southern Relief Road – Blue Route Option 3

Description – A 3.00km S2/Wide Single Carriageway Climbing Lane Section links the A2 Warrenpoint Road to the A1/N1 Belfast Dublin Corridor.

Main Constraints – The majority of traffic currently passing through Newry converges in the centre of the city, resulting in considerable congestion. Total Sche Optimism

Objective	Sub-Objective	Qualitative Impacts	Quantitative Assessment	Assessment
		and important wildlife corridors, hedgerow loss would be detrimental, causing habitat fragmentation for local wildlife.		
	Landscape Effects	The river bridge location of Blue Route Option 3 within Greenbank Industrial Estate would likely become a gateway / landmark between the city and the river valley further south-east due to its required high clearing between the bridge and Newry River / Canal. Considering its location within the urban and light industrial southern fringe of Newry, the development would be able to integrate into its urban / light industrial context and would not detract considerably from the overall character in the area. Would traverse the LLPA NY114 Newry Canal / River. Whilst Blue Route Option 3 would have major landscape and visual effects due to significant sections of cut & fill, it has the greatest potential to integrate into the environment as it is located in an area of transition between the sub-urban end of Newry and the rural and wooded parts of the river valley. Blue Route Option 3 would have extensive embankments facing east towards the Newry River valley.	N/A (Qualitative Assessment Only)	Landscape Moderate Adverse to Large Adverse Visual Moderate Adverse to Large Adverse
		Would encroach into the settlement development limit as designated in the Banbridge / Newry & Mourne Area Plan 2015, notably affecting a major area of existing open space effectively resulting in its loss and functionality from a community/recreational perspective (Gerry Brown Park). Would also split an existing area of economic development associated with Greenbank Industrial Estate, however would result in no loss of land from this zoned area (may also improve access). Would directly affect the Newry Canal/River LLPA (NY 114). Would avoid direct encroachment into Fathom Lower Woods & Grasslands SLNCI. All route options would traverse a similar length of agricultural land. Does not include a bascule bridge over the canal at this stage, creating a potential restriction or obstacle to passage for tall ships.	Seven properties at risk of demolition, including five residential properties, one community property and one commercial property.	
	Land Use		Eight residential properties at risk of private land loss, with two being subject to moderate adverse impacts and the remainder subject to minor impacts.	Slight Adverse – Large Adverse
			Six planning applications at risk of direct impacts. For those that are still extant, the impact would be minor.	

Newry Southern Relief Road – Blue Route Option 3

Description – A 3.00km S2/Wide Single Carriageway Climbing Lane Section links the A2 Warrenpoint Road to the A1/N1 Belfast Dublin Corridor.

Main Constraints – The majority of traffic currently passing through Newry converges in the centre of the city, resulting in considerable congestion. Total Scheme Cost (Excl. Optimism Bias) – £43.468m Total Scheme Cost (Incl. Optimism Bias) – £59.247m

Objective	Sub-Objective	Qualitative Impacts	Quantitative Assessment		Assessment	Assessment	
	Noise & Vibration	Would have a comparatively high number of receptors, both within 50m, (the zone where noise levels would be greatest), and within 300m. These are primarily highly sensitive residential receptors. In terms of road gradient, steepest gradient (8%). The longer the length of road at this gradient; the higher the potential there is for adverse noise impacts. Would require a significant degree of earthworks (cutting and embankments) and bridge works.	When comparing the Do-Minimum in the Baselin Something in the Future Year (15th Year) for Bl experience a less than 10% increase in noise nu increase in noise nuisance, 1 would experience and 4 would experience no change. Under this scenario, it is predicted that the 68 dl properties under the 'Do-Something' scenario. It would exceed this value under the 'Do-Minimum network. There are 19 properties which would be expose outside under the 'Do-Something' scenario in the F	Neutral – Large Adverse Views : Moderate Beneficial Driver Stress: Moderate Beneficial Slight Adverse Slight Adverse			
	Vehicle Travellers	New and interesting views would be opened-up. Currently, driver stress levels through the affected road network of Newry are considered to be 'High', and would be expected to reduce on completion of the scheme.	N/A (Qualitative Assessment Only)				
	Road Drainage & the Water Environment	Would not directly affect any designated or known shellfishery beds, nor would it directly affect Carlingford Lough ASSI. Bridge crossing point and alignment would minimise the potential for establishment of preferential pathways and sediment release. Would be located within the Q_{100} floodplain. The feeder stream to Bensons Glen Fish Hatchery would be directly affected.	N/A (Qualitative Assessment Only)				
	Geology & Soils	Would potentially have less impact on soils as a result of its being partially within urban and disturbed soil types and shorter overall length. However, its partial location within the urban area would increase the potential to encounter contaminated soils/groundwater (particularly within Greenbank Industrial Estate).	N/A (Qualitative Assessment Only)				
		Significantly reduced peak and off-peak journey times on the road network in the 2023 year of opening compared to existing routes by	For the Opening Year: RTF 2015 Growth		TEE (RTF 2015 Growth)		
	Transport		Total Vehicle-Hours Saved (Two-Way):	178,000	Consumer PVB:	£55.549m	
ECONOMY	Economic		Average Journey Time Change (Mins/Veh): 1.6 mins saved on strategic route Warrenpoint to / from Carrickcarnan 1.6 mins saved on strategic route		Business PVB:	£32.114m	
	Efficiency	avoiding the congested urban road network within Newry City Centre.		Private PVB:	£0.300m		
			Warrenpoint to / from Camlough		ITR PVB:	-£1.538m	

Newry Southern Relief Road – Blue Route Option 3

Description – A 3.00km S2/Wide Single Carriageway Climbing Lane Section links the A2 Warrenpoint Road to the A1/N1 Belfast Dublin Corridor.

Main Constraints – The majority of traffic currently passing through Newry converges in the centre of the city, resulting in considerable congestion.

								Optimisin bias)	20012 1111
Objective	Sub-Objective	bjective Qualitative Impacts Quantitative Assessment					Assessment		
						4.4 mins saved on strategic route Warrenpoint to / from Carnbane 2.3 mins saved on strategic route Warrenpoint to / from Sheepbridge		Emissions PVB:	£0.259m
								Government Funding PVC:	£30.966m
						5.4 mins saved on s Greenbank Rbt to /		Overall PVB	£91.303m
						Carrickcarnan 1.2 mins saved on strategic route City Centre to / from Carrickcarnan		Overall PVC	£31.413m
								NPV	£59.889m
								BCR	2.906
	Reliability	Improved journey time reliability through the provision of a Newry Southern Relief Road to address acknowledged operational congestion through Newry City Centre.	N/A – Qualitativ	e Assessment On	у				
	Pedestrians, Cyclists & Equestrians	Would potentially affect one alleged PROW (at Middlebank) and cross the Ring of Gullion Waymarked Way. The proposed high off-road cycle and walking greenway to be developed along Middlebank would be indirectly impacted in terms of setting. Would impact on existing and proposed National Cycle Networks / Sustrans proposals. No known equestrian facilities would be directly affected. Would impact on the setting/amenity of the Ship Canal as an angling facility. Likely significant reduction in traffic on Kilmorey Street and overall reduction in rat-running.	N/A (Qualitative Assessment Only)			Slight Adverse – Slight Beneficial			
	Accidents	Significant savings in the number of accidents and the number of serious and slight casualties due to the provision of a Newry Southern Relief Road to remove traffic from the heavily trafficked junctions on the urban road network within Newry City Centre, based on the application of national accident characteristics.	Growth	Accidents	Deaths	Serious	Slight	Accidents PVB (R	TF 2015 Growth
SOCIAL			RTF 2015	129.4	-0.1	13.0	149.1	£4.618m	
	Community Severance	Significant volumes of traffic would continue to be drawn into the city from all directions; however the relief of some of the traffic on the urban road network may improve access to community facilities, with a possible reduction in vehicular/pedestrian conflict due to the slight easing of congestion. The benefit of relieving some traffic and slight easing of congestion may also be experienced throughout the wider network of urban roads which have become heavily used routes by traffic wishing to avoid/bypass the congested areas. Not only may this lead to improved access to community facilities throughout the wider urban area but also partially reduce the degree of community severance. It may also serve to	N/A (Qualitative Assessment Only)				Slight Beneficial		

Newry Southern Relief Road – Blue Route Option 3

Description – A 3.00km S2/Wide Single Carriageway Climbing Lane Section links the A2 Warrenpoint Road to the A1/N1 Belfast Dublin Corridor.

Main Constraints – The majority of traffic currently passing through Newry converges in the centre of the city, resulting in considerable congestion. Optim

				Optimism Blas) – £59.247m
Objective	Sub-Objective	Qualitative Impacts	Quantitative Assessment	Assessment
		encourage journeys into the city by those previously deterred by the high levels of traffic on the city roads.		
	Access to Public Transport	Access to the local road network would be maintained for local Ulsterbus services linking the surrounding towns and villages. The Route would likely result in reduction in delays for public transport services through separation of local and strategic traffic to a certain degree. There would be no long-term impact upon rail services.	N/A (Qualitative Assessment Only)	Slight Beneficial
	Transport Interchange	As a long-term strategic road improvement to link from the A1 Dublin Road (a key strategic route), to the A2 Warrenpoint Road (a trunk road leading to Warrenpoint Port) the provision of a relief road to the south of Newry would provide an obvious benefit to the transport interchanges, particularly with regards to the potential for removal of a significant proportion of port-related HGV movements from the city centre road network. A maximum gradient of 8% occurs for approximately 0.4km. This could potentially discourage HGV drivers from using the route due to higher	N/A (Qualitative Assessment Only)	Slight Beneficial
		costs and performance issues associated with the steeper gradient. A significant cut along the Fathom Line connector could potentially require blasting. The route would result in a substantial embankment to the west of Fathom Line with slope lengths up to 60m. Flagstaff Road would require realignment in order to gain sufficient clearance for an overbridge.		
	Land-Use Planning	Conforms to policies in the RDS, RTS and RSTNTP. Specifically the route would help achieve the strategic aims of the RDS (2035) and conforms to its specific regional guidance; to deliver a balanced approach to transport infrastructure. The route would help maximise the potential of the RSTN, by removing bottlenecks on the key road network where lack of capacity is causing congestion and improving the environment by providing bypasses, relieving the effects of heavy through traffic. The scheme is part of the Strategic Road Improvement Programme, and is currently in Dfl's 10 year Forward Planning Schedule, as of April 2015.	N/A (Qualitative Assessment Only)	Slight Adverse - Moderate Beneficial
	Other Government Policies	The scheme is supported by proposals contained within the Banbridge/Newry and Mourne Area Plan 2015 and the Newry City Masterplan, which in turn are largely in conformance with other Government Department Objectives for integrated transport.	N/A (Qualitative Assessment Only)	Moderate Beneficial
PUBLIC ACCOUNTS	Affordability			(Excl. Optimism Bias) – £43.468m

Newry Southern Relief Road – Blue Route Option 3		Description – A 3.00km S2/Wide Single Carriageway Climbing Lane Section links the A2 Warrenpoint Road to the A1/N1 Belfast Dublin Corridor.		Main Constraints – The majority of traffic currently passing through Newry converges in the centre of the city, resulting in considerable congestion.	Total Scheme Cost (Excl. Optimism Bias) – £43.468m Total Scheme Cost (Incl. Optimism Bias) – £59.247m
Objective	bjective Sub-Objective Qualitative Impacts Quantitative		Assessment	Assessment	
					(Incl. 36.3% OB) – £59.247m

aecom.com